
LIBOBFUSCATE V2.00 REFERENCE MANUAL

Advanced file & text locking made easy, safe and free
EmbeddedSW © 2018

Send your suggestions, comments, bug reports, requests
to embedded@embeddedsw.net – Skype "embeddedsw.company"

LIBOBFUSCATE HOMEPAGE

Derived projects: OPENPUFF MULTIOBFUSCATOR

 LEGAL REMARKS P. 2

 PROGRAM ARCHITECTURE P. 3

LIBOBFUSCATE V2.00 - ENGLISH - 11/07/2018

skype:embeddedsw.company?call
http://embeddedsw.net/libObfuscate_Cryptography_Home.html
mailto:embedded@embeddedsw.net
http://embeddedsw.net/MultiObfuscator_Cryptography_Home.html
http://embeddedsw.net/OpenPuff_Steganography_Home.html

 LEGAL REMARKS

Remember: this program was not written for illegal use. Usage of this program that may violate your
country's laws is severely forbidden. The author declines all responsibilities for improper use of this
program.

No patented code or format has been added to this program.

THIS IS A FREE SOFTWARE:

This software is released under LGPL 3.0

You’re free to copy, distribute, remix and make commercial use of this software under the following
conditions:
 You have to cite the author (and copyright owner): WWW.EMBEDDEDSW.NET
 You have to provide a link to the author’s Homepage: WWW.EMBEDDEDSW.NET/LIBOBFUSCATE.HTML

BACK

LIBOBFUSCATE V2.00 - ENGLISH - 11/07/2018

http://www.embeddedsw.net/
http://www.gnu.org/licenses/lgpl.html
http://www.embeddedsw.net/libobfuscate.html

 PROGRAM ARCHITECTURE

libObfuscate implements multi-cryptography (an advanced kind of PROBABILISTIC ENCRYPTION) joining 16
open-source block-based modern cryptography algorithms, chosen among AES-PROCESS , NESSIE-
PROCESS and CRYPTREC-PROCESS . Cypher-Block-Chaining (CBC) wraps these block-based
algorithms, letting them to behave as stream-based algorithms.

Multi-cryptography setup is a 4 step process
 a random initialization vector array (16 x 128bit) is associated to each carrier
 a pseudo random engine (CSPRNG) is seeded using password (B)
 password (A) is extended (KDF4) using 4 open-source modern 512bit hashing algorithms, taken

from SHA2 and SHA3 . Each hash generates four 256bit keys
Pssw (1) | (2) | (3) | (4) = Rand (Sha2 (Pssw (A)))
Pssw (5) | (6) | (7) | (8) = Rand (Grøstl (Pssw (A)))
Pssw (9) | (10) | (11) | (12) = Rand (Keccak (Pssw (A)))
Pssw (13) | (14) | (15) | (16) = Rand (Skein (Pssw (A)))

 resulting key array (16 x 256bit) is associated to each cipher using the CSPRNG

LIBOBFUSCATE V2.00 - ENGLISH - 11/07/2018

Data IN

Data OUT

OpenSource Multi-Cryptography
128bit Blocks - 256bit Keys [16x] - CBC
 AES ANUBIS CAMELLIA

 CAST256 CLEFIA FROG

 HIEROCRYPT3 IDEA-NXT MARS

 RC6 SAFER+ SC2000

 SERPENT SPEED TWOFISH

 UNICORN-A

 A Pssw

 B Pssw

KDF4

 SHA2 GRØST L

 KECCAK SKEIN

CSPRNG

CSPRNG (HASH512i (Pssw A))

 i Pssw

 i+1 Pssw

 i+2 Pssw

 i+3 Pssw

IVs [16x] (128bit)
CSPRNG

http://en.wikipedia.org/wiki/SHA-3
http://en.wikipedia.org/wiki/SHA2
http://www.di-mgt.com.au/cryptoKDFs.html
http://en.wikipedia.org/wiki/CRYPTREC
http://en.wikipedia.org/wiki/NESSIE
http://en.wikipedia.org/wiki/NESSIE
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard_process
http://en.wikipedia.org/wiki/Probabilistic_encryption

Cryptography is a multi step process
 each data gets a global setup

Setup = { { IV } , CSPRNG , { Key } }
 each cipher gets an independent setup

Cipherj = { IVj , Keyj }
 each data block is processed with a different cipher, selected using the CSPRNG

CryptedBlockk = r Rand-i () ; Cipherr (IVr , Keyr , Blockk)

 …

 …

 cryptography setup and CSPRNG setup get two independent passwords
 each implemented cipher gets a different IV and key
 CSPRNG behaves like an ORACLE that feeds the cryptography engine during all his choices (which

key has to be associated to which cipher, which cipher has to be applied to which data block, …)

 …

 …

 … …

BACK

LIBOBFUSCATE V2.00 - ENGLISH - 11/07/2018

CSPRNG-i

Carrieri (128bit IN)
Block 1/N

Carrieri (128bit IN)
Block 2/N

Carrieri (128bit IN)
Block N/N

Carrieri (128bit OUT)
AES(Block1/N)

Carrieri (128bit OUT)
MARS(BlockN/N)

Carrieri (128bit OUT)
RC6(Block2/N)

RAND-i () = MARSRAND-i () = AES RAND-i () = RC6IVsi [16x]
(128bit)

IV[1] IV[2] IV[3] D’[1] D’[2] D’[3] D’[4] D’[5]

Key[1]

Key[2]

Key[3]

AES

RC6

MARS

AES

RC6

ORACLE
D[1] D[2] D[3] D[4] D[5]

http://en.wikipedia.org/wiki/Random_oracle

