
Integration Testing with Steganographic Tools

1. Introduction

Steganography is the practice of concealing a file, message, image, or video within another file, message, image, or video. The word

steganography combines the Greek words steganos, meaning "covered, concealed, or protected", and graphein meaning "writing". The

first recorded use of the term was in 1499 by Johannes Trithemius in his “Steganographia”, a treatise on cryptography and

steganography, disguised as a book on magic. Generally, the hidden messages appear to be (or be part of) something else: images,

articles, shopping lists, or some other cover text. For example, the hidden message may be in invisible ink between the visible lines of

a private letter [1]. There are several ways to hide data, including data injection and data substitution. In data injection the secret

message is directly embedded in the host medium. The problem with embedding is that it usually makes the host file larger; therefore,

the alteration is easier to detect. In substitution, however, the normal data is replaced or substituted with the secret data. This usually

results in very little size changes for the host file. However, depending on the type of host file and/or the amount of hidden data, the

substitution method can degrade the quality of the original host file. Generation technique generates a container file based on the

covert data. There is no original container file. However, it is time consuming and complex to develop. The DCT is "a technique for

expressing a waveform as a weighted sum of cosines”. In a JPEG file, the image is made up of DCT coefficient. When a file is

steganographically embedded into a JPEG image, the relation of these coefficients is altered. Instead of actual bits in the image being

changed as in LSB steganography, it is the relation of the coefficients to one another that is altered. In addition to DCT, images can be

processed with fast Fourier transform (FFT). FFT is "an algorithm for computing the Fourier transform of a set of discrete data

values". The FFT expresses a finite set of data points in terms of its component frequencies. It also solves the identical inverse

problem of reconstructing a signal from the frequency data.

Saugata Dutta

Research Scholar, Computer Science, OPJS University, Rajasthan, India

Dr. Om Prakash

Professor, OPJS University, Churu, Rajasthan, India

Abstract:

Steganography is the art of hiding information. It is the art of secret writing. Steganography helps in eliminating the useful and

confidential information from common public or users. It is the art of concealing file, message, image or video within another

file. The Cover file is the file which carries the message file. This paper discusses about hiding different format of files in

different steganography tools and test the integrity of the message files inside the related application at the receiving end. This

paper discuss about the experiment held using different steganography techniques with steganography tools. The objective of the

experiment is to check the integrity of the message files of different formats hidden with different steganography tools and

decoding at the receiving end. The experiment throws light on the condition of the file received, integrity and execution with the

related application at the receiving end. The paper then shows experiment results used with image, audio, video, dual layer

steganography and steganography file system followed by the conclusion whether the experiment result can reject the null

hypothesis or the experiment holds no significant changes.

Figure 1: Basic steganography process

Steganography for audio has grown as a new technology that involves different algorithms such as echo encoding and phase encoding

that are different from the algorithms used for image steganography. As audio techniques have been developed for audio streaming on

the internet for radio station, incorporated into social networking and communication applications like Skype, Google hangouts and

also in VOIP (Voice over IP) communications. In Video Steganography it can be used in video files, because as we know, AVI files

are created out of bitmaps, combined into one piece, which are played in correct order and with appropriate time gap. A Single file is

broken into frames which can be saved as BMP files. If algorithm for hiding data in digital pictures, we can hide our message in

bitmap obtained in this way, and then save it into new AVI file. In steganographic file system, there is a storage mechanism designed

to give the user a very high level of protection against being compelled to disclose its contents. It will deliver a file to any user who

knows its name and password; but an attacker who does not possess this information and cannot guess it, can gain no information

about whether the file is present, even given complete access to all the hardware and software. We provide two independent

constructions, which make slightly different assumptions. Practical uses for this technology, for instance, one can store password

information on an image file on your hard drive or Web page, some legal documents, some plans to be shared which may be hidden

and documented. Applications where encryption not appropriate (or legal), Stego can be used for covert data transmissions. Although

this technology was used mainly for military operations, it is now gaining popularity in the commercial marketplace. As with every

technology there are illegal uses for Stego as well. It was reported that terrorists use this technology to hide and send their attack

plans. The Purpose of our present research is to check the integrity of the message file of almost all possible formats after being

attached with the cover file and hidden and encrypted with steganographic tools and sent over the network with different methods.

Once the file reaches the destination, the file is then attached with steganographic tools to detach the file from the cover file after

decryption. The original file at destination end is then attached with the relevant application. The size of file may be of any size.

Our Purpose is to see whether the file works in the same manner without any loss and can be integrated to the application as before it

was unhidden and unencrypted. Files will be attached to different formats of cover file like Image, Video, Audio and TCP/IP packets.

We will also check the condition of the cover files (image, video and audio files) with steganographic tools compared to the original.

In another part of the research, message file(s) will be kept in the Stego File systems to test the file integration with the application and

also will perform dual layer steganography and encrypt for better security and then the integrity testing with the application will be

tested.

2. Review Literature
Qilin Qi proposed that steganographic message can be inserted in multimedia cover signals such as audio, image and video. There is a

method called discrete spring transform which is used to remove the potential dangerous hidden information keeping the digital data

in high visual quality. The Proposed transform causes the numerical value to be changed dramatically and the hidden information is

not able to be recovered while at the same time the visual image quality is maintained [2]

Manisha Saini and Gaurav Saini explored tools being used for primarily data hiding and encryption. There are some common tools

being used for Images, audio and video files. It also shows the virtual disk to be hidden in WAV (Audio) files. StegFs which is a

steganographic file system for Linux. Spam Mimic is a popular steganographic tool that allows user to hide information in SPAM

messages [3].

Abbas Cheddad, Joan Condell, Kevin Curran and Paul Mc Kevitt explored the emerging techniques DCT (Discrete Cosine

Transform), DWT (Discrete Wave Transform) and adaptive steganography are not to prone to attacks, especially when the message is

small. This is because they alter the coefficients in the transform domain, thus image distortion kept to minimum. Generally, these

methods tend to have a lower payload compared to spatial domain algorithms [4].

Ketki Thakre and Nehal Chitaliya worked on dual image steganography where the proposed method embeds data in two cover images

using four bit LSB technique. The secret data is hidden in binary form in two cover images due to which double protection has been

provided to confidential data. The proposed scheme shows that it can be a good alternative for secure communication where two level

of security is obtained [5].

Kaustubh Choudhary showed how an innocent looking digital image hides a deadly terrorist plan. It analyses the methods and reasons

the terrorist is relying on it. Even a simple steganographic algorithm can hide data so efficiently that steganalysis become very

difficult on various accords of time, computation power and money. The Real world terrorism uses more complex and innumerable

steganographic algorithms [6].

Govinda Borse, Kailash Patel and Vijay Anand explored data hiding techniques were being used from ancient ages to recent times. In

ancient times data hiding techniques used Wax Tablets, Invisible ink, Microdots, Null Ciphers and Girolama Cardano as simple as

piece of paper with holes cut in it. In recent times the data hiding techniques has changed from the past in images, music, videos,

storage, and VOIP and TCP/IP packets [7].

Erin Michaud explored some of the more common methods of data hiding using wide spread file formats and easily available tools as

an introduction to the primary concepts of steganography. This exploration served as the starting points to the exploration of more

complex steganographic techniques, for e.g. the use of network packets and unused hard disk space as cover medium or the more

complex methodologies used on our standard image and audio files [8].

Ms. Anshu Sharma and Dr. Deepti Sharma proposed a system where it used LSB Technique for embedding the Text message and the

three techniques i.e. AES, DES and Blow fish for encrypting and Decrypting the Information before sending it to the client. This

showed how various techniques can be combined to provide more security by combining cryptography with steganographic

techniques [9].

Matus Jokay and Martin Kosdy designed and implemented the steganographic layer based on the jpeg files that can be used directly as

the virtual disk or in a connection with existing disk encryption solutions as a hidden storage medium [10].

Figure 2: Audio, image and video cover file

Barret Miller developed a program that used the interface id portion of the source address fields of IPv6 packet as a covert channel in

which to transmit secret data. The program can both transmit and receive secret data in the source addresses of IPv6 packets in two

different and important ways. In the first way the program can be configured to work is to embed the message by changing the MAC

address of the originating host to the secret message. In the second way the program can embed messages is by explicitly creating

IPv6 packets containing the message in the source address field, which are then injected into the network [11].

3. Experiment

The Objective of the research is to test the integrity of the message file(s) once when hidden and encoded in a steganography tool and

passed through the network and decoded at the receiver’s end with the same steganography tool and finally attached in the related

application. Various Steganography tools are analyzed where eleven best steganography tools are selected for usage. These tools

Audio cover file

Image cover file Video cover file

include image steganography, audio steganography, video steganography and usage of steganography file system. The next step is to

identify the various file formats to be used for the message file(s) in the experiment. The identification includes not only the common

file formats but also some of the rare and uncommon file formats are chosen. The sample message files are one hundred and three

different types of file formats. The objective of the research is to have a full proof of checking the integrity and execution of the

message file with different permutation and combination of steganography techniques such that the experiment can be concluded with

a logical and significant evidence. The next step is to choose the cover file. In three broad categories (Image, Video and Audio) cover

files are selected of different attributes. For Image steganography JPG and BMP formats are selected of different sizes. The

dimensions include (800 x 600, 1920 x 1080, 3384 x 2256, 4692 x 3214, 5152 x 3439, 5494 x 5839, 7360 x 4192). Video

Steganography cover files includes of MP4 formats with frame width mostly 960 and frame height 540 and frame rate 29/Sec while

some are 15/Sec. In some instances of video steganography multiple cover files are being used. Sound steganography cover files

includes WAV format files with 2 channel and 1411 Kbps of bit rate. SHA-1 Hash generator being used to generate checksum and

verify the integrity by using verification file (. sha) which produces a 160-bit (20 byte) hash value. Hasher software being used to

generate hash value for sample message file. The Second Layer of integrity check being used with file comparing utility Winmerge.

Figure 3: Stego audio, image and video encoded files with hidden sample message files

Figure 4: Sample message files extracted at receiving end

Stego Audio File Hidden Message File

 Stego audio file Hidden TXT format file

 Stego video file Hidden XLSX format file

Figure 5: Integrity checking process of the message file with SHA-1 at the receiving end

Figure 6: File comparison with the extracted message file against the non- encoded sample message file

Figure 7: Message file execution with the related application comparing at the sending

 (before encoding) and receiving end (after decoding and integrity check)

The technique of steganography process includes image steganography, audio steganography, video steganography, dual layer video

steganography and dual layer audio steganography and usage of steganography file system. The Experiment Process starts with

hashing the sample files at first. These hash files are then kept separately in a secured location. For image, video and audio

steganography each and every sample message files of different formats are hidden with each respective steganography softwares

being used in the experiment process. They are in turn encrypted with AES-256 encryption and in some cases encryption is not

applied. The stego output file format for all steganography process is usually the same format of the cover file. The output stego file

along with the concerned hash file is then sent over the network and uploaded in cloud drive. The same output stego file is then

downloaded at the receiver end and identical steganography software being used to decode the stego file. Once the stego file is

decoded at the receiving end and message file is extracted where it is isolated from the cover file along with the decryption process (if

encrypted) is then kept in a separate location. The extracted message file undergoes 3 layers of integrity check. The first layer of check

is the SHA-1 hash value check with hasher software. Once the message file passes the check, the second check starts with the file

compare utility Winmerge. The original sample message file before the steganography process is downloaded and compared with the

extracted message file. The last step includes the execution of the extracted message file with the related application.

The dual layer image and video steganography process includes two layer encoding and decoding process and checking the integrity

of the extracted message file. The first step is to encode the sample message file with a cover file including encryption. The stego

output file is then re-encoded with a cover file and applied encryption. The output stego file is then transmitted to the cloud storage

along with the respective hash file of the sample message file encoded. The output stego file and respective hash file is then

downloaded and decoded and decrypted with the identical steganography software where the output stego file is then isolated from the

cover file.

Figure 8: Dual layer steganography

Figure 9: StegFs file system

The same file is then re-decoded and the message file is then decrypted and extracted while isolated from the second layer of cover

file. The final output message file is then passed through the hash integrity test and eventually the file comparing utility with the

original sample file. Once the process is finished the message file is then executed in the related application. The file should execute

and work in the same way as before the steganography process.

The Stego File system experiment process starts with implementation of StegFs software in Linux operating system. The StegFs

software is installed and implemented as an ext2 file system and mounted as a mount point. The sample message files are copied and

kept in the Stego file system. The message files become invisible when remounted the StegFs file system and can only be called and

opened with the file name. The name of the copied sample message files should be known which is a pre-requisite. The sample

message file is encrypted and it is called with the following pattern “<filename>@<Password>”. The Stego file system is then used

for some input / output operations. The extraction process finally starts by calling the filename along with the encrypted password for

the files which are encrypted. The Message files are then copied from the StegFs, the extracted message files are then pass through the

integrity check with the respective hash file by using hasher. Once the test is passed the message file is then compared with the

original sample file through the file comparison utility Winmerge. Finally, after the step is completed the extracted message file is

then executed in the related application. The entire experiment results are recorded to conclude.

StegFs Preparation Displaying hidden file

Layer 1 stego image file

Layer2 stego image file

Extracted png format message file

4. Tools and Samples Used
The sample message files used for this experiment are of one hundred and their different types of file formats.

Message files Size Message files Size

.CAB 28 KB .SVG 804 KB

.7z 790 B .SCAD 1 KB

.APK 68 KB .STL 312 KB

.BKF 24 KB .SFX 52 KB

.ZIP 1 KB .CMD 2 KB

.RAR 923 B .INF 584 B

.RPM 65 KB .REG 2 KB

.TAR 21 KB .SEP 3 KB

.ISO 1.1 MB .SCR 10 KB

.IMG 1.2 MB .PNF 7 KB

.DXF 378 KB .CHM 64 KB

.DWF 135 KB .ACCDB 316 KB

.DWG 185 KB .DBF 808 B

.MDB 232 kb .ODS 45kb

.MDF 2.6 MB .ODG 717 kb

.SQL 370 B .PS1 2 KB

.SDF 512 KB .SH 48 B

.BSON 1 KB .PPK 1 KB

.AI 242 KB .CRT 2 KB

.CDR 3 KB .AMR 55 KB

.PSD 904 KB .MP3 193 KB

.PDF 2 KB .WMA 157 KB

.WLMP 7 KB .WAV 108 KB

.CSV 538 B .MID 38 KB

.DOC 27 KB C 58 B

.DOCX 13 KB .BAT 179 B

.LOG 41 KB .JAVA 142 B

.OTF 3 KB .PHP 270 B

.TTF 3 KB .PY 234 B

.GPX 7 KB .JS 88 B

.KML 35 KB .SXC 11 KB

.BMP 32 KB .XLS 27 KB

.GIF 33 KB .XLSX 11 KB

.ICNS 38 KB .3GP 1 MB

.ICO 1 KB .AVI 225 KB

.PNG 3 KB .FLV 139 KB

.JPEG / .JPG 34 KB .MOV 1.9 MB

.LNK 1 KB .MPG 690 KB

.URL 133 B .MP4 205 KB

.COM 1 KB .SWF 3.1 MB

.JAR 982 B WMV 91 KB

.WAR 1 KB VHD 2 MB

.TPL 4 KB VMDK 1.1 MB

.MSG 11 KB VDI 2 MB

.EML 193 B HTML 78 B

.PST 265 KB ASP 103 B

.PPS 74 KB ASPX 6 KB

.PPT 40 KB JSP 77 B

.PPTX 53 KB .BAK 768 B

.ODP 58 KB .DAT 741 B

.ODT 752 KB .TXT 225 KB

.TMP 808B

Table 1: Sample message file formats

There are various steganography utilities, for the purpose of experiment eleven different steganography utilities are used.

Tool Name Details

Open Stego (V0.6.1)

OpenStego is a free steganography tool. It provides two main functionalities that is data hiding and digital

watermarking. It supports file types for cover are: BMP, GIF, JPEG, JPG, PNG, and WBMP. It supports

password-based encryption of data for additional layer of security. DES algorithm is used for data

encryption, along with MD5 hashing to derive the DES key from the password provided.

Silent Eye(V0.4.1)

SilentEye is an easy to use cross platform steganography program. It supports various common image and

audio formats including BMP, JPG, PNG, GIF, TIF, and WAV. The default encoding image format can

be configured between JPG or BMP and similarly for audio encoding the default format is WAV only.

The software also has an option for password encoding.

Xiao

Steganography(V2.6.1)

Xiao Steganography is a simple to use free software to hide secret files in BMP images or in WAV files

with encryption support. The Supported encryption algorithms are RC4, Triple DES, DES, Triple DES

112, RC2 and hashing SHA, MD4, MD2, MD5, algorithms.

DeepSound (V2.0)

DeepSound is a steganography tool and audio converter that hides secret data into audio files. The

application also enables you to extract secret files directly from audio files or audio CD tracks.

DeepSound also support encrypting secret files using AES-256(Advanced Encryption Standard) to

improve data protection. The application additionally contains an easy to use Audio Converter Module

that can encode several audio formats (FLAC, MP3, WMA, WAV, and APE) to others (FLAC, MP3,

WAV, APE).

Clotho (V2.4)

Clotho is a powerful but easy to use tool for Windows to hide important or sensitive files into images,

audio, executable or in other various types of files. The program gives you the possibility to specify the

file where the sensitive data should be hidden, namely MP3, WAV, MID, OGG, JPEG, PNG, GIF, BMP,

MP4, FLV, AVI, ZIP, RAR, EXE, MSI, DLL, or other file formats. Password encryption is also possible.

OpenPuff (V4.0)

Openpuff is a powerful Image, audio and video steganography too which has features like HW seeded

random number generator (CSPRNG), Deniable steganography, Carrier chains (up to 256Mb of hidden

data), Carrier bits selection level, Modern multi-cryptography (16 algorithms), Multi-layered data

obfuscation (3 passwords), X-squared steganalysis resistance. It supports format like Images (BMP, JPG,

PCX, PNG, TGA), Audio support (AIFF, MP3, NEXT/SUN, WAV), Video support (3GP, MP4, MPG,

VOB) and Flash-Adobe support (FLV, SWF, PDF)

StegoPNG (v11.22d)

Stego PNG allows to hide a file of any type in a PNG or a BMP image file.

The steganography software inserts data in the image file in a random way depending on a key (which is

also used to encrypt the data), and changes other bits of the image file to compensate for the

modifications induced by the hidden data so as to avoid modifying statistical properties of the image file.

It is thus more secure than most steganography programs.

SteganoG (V1.21.0)

SteganoG store confidential data of any kind in a bitmap file that the image appears to be unchanged. A

powerful compression and an adjustable image quality will also allow to save relatively large amounts of

data. For data security, RC4 encryption method, Blowfish, TEA, Twofish and Skipjack.

SteganPEG (V1.0)

SteganPEG is an application of Steganography to JPEG images. The software can hide personal, private,

or sensitive files in any JPEG image without changing its quality and size considerably. The main reason

for choosing the JPEG image format is that it is a compressed image format that is very popular all over

the world today.

OurSecret (V2.5.5)

Our Secret (formerly Steganography) hides text files or files such as video, audio, image and others in

file. It is designed to hide and send sensitive files or messages. This allows to encrypt sensitive

information, while at the same time hiding it in a file will evade suspicious. The program gives options to

hide any file format with password encryption.

StegFs

StegFs is a steganographic file system in userspace which uses the FUSE library. Steganographic file

systems are one step ahead of (or beyond) traditional encrypted file systems as they aim to grant the user

plausible deniability of the files within

Table 2: Steganography tools used

IgorWare Hasher is a free SHA-1, MD5 and CRC32 hash generator for Windows, both 64bit and 32bit version is available. IgorWare

Hasher is used to generate checksum for single file and verify its integrity by using verification file (.sha, .md5 and .sfv) generated by

Total Commander, with support for UTF-8 verification files. Verification files will be loaded automatically if found.

Figure 10: Hasher Utility

Figure 11: Winmerge utility

WinMerge is a free software tool for data comparison and merging files. It is useful for determining what has changed between

versions and contents which in this experiment is being used to test the source and destination message files after the process of

steganography.

5. Experiment Result and Analysis

The experiment result for all the software tools showed the capacity to hide files and decode at the receiving end, however there are

some results where the process has failed. Broadly the result is categorized into three categories. The First category where the normal

hiding techniques has been applied with cover image, audio and video files with one hundred and three different formats of message

files and eight different sample steganography tools. The second category justifies the dual layer steganography techniques applied in

one hundred and three different formats of message files and two different steganography tools in testing the integrity and thirdly the

usage of steganography file system to test the integrity of one hundred and three different sample message file formats.

In the first category, the average success rate is 87% and failure rate is 13%. Openstego where image steganography has been applied

yield a success rate of 100% with no failures at the receiving end. File format mov and swf files failed to encode at the receiving end

which is beyond the scope of the experiment. Silent eye with sound steganography technique yield a success rate of 98% and failure

rate of 2%. Clotho which uses video steganography techniques experienced a success rate of 100% of integrity testing including file

comparison and file execution at the receiving end. Openpuff uses video steganography techniques also resulted a success rate of

100% of integrity testing including file comparison and file execution at the receiving end. The cover video file size for Openpuff used

are very high as compared to Clotho because of the file hiding ratio is too low as compared with other utilities. Deepsound a sound

steganography utility resulted success rate of 98% and failure rate of 2%. The message file format svg and swf were failed to decode.

XIAO, a sound steganography tool resulted a success rate of 100% along with StegoPNG, an image steganography tool which resulted

the same 100% success rate. SteganoG on the other hand has a very low success rate of only 3% and failed rate of 97%. These files

experienced corruption when extracted at the receiving end.

Figure 12: File integrity result of image audio and video steganography technique

0%

20%

40%

60%

80%

100%

120%

SteganoPEG O urSecret

D ual layer steganography

Su ccess rate Fa iled rate

Figure 13: File integrity result of dual layer steganography technique

The second category of experiment result throws light on dual steganography techniques. SteganoPEG, an image steganography tool

is being used to repeat the steganography process twice. The cover files were JPEG format in both the layers. This techniques of file

integrity testing resulted success rate of 100%. The image cover file size in the second layer was high as compared to the first layer to

accommodate both the message and cover file. Our secret, a video steganography tool being used for dual steganography techniques

and resulted a success rate of 100% as well. The modus operandi for both the dual steganography implementation was same.

Figure 14: File integrity result of steganographic file system technique

The third category is implementation of StegFs, a steganographic file system. Sample message files were hidden in the file system

which is basically the acid property of StegFs. The success rate of extracting the file after some file operations done on the file system

is significantly poor. The success rate of only 2% and failure rate of 98% was alarming. The integrity testing of files extracted failed

all stages of experimentation stages.

Figure 15: Overall file integrity result with applied steganography techniques

At the end of the experiment the results are clear and more prominent and proved that the result showed no significant changes. To

statistically prove the same two statistical test has been carried out with the sample data file formats along with the eleven samples

steganography utilities used in the experiment.

Figure 16: t- Test has been carried out with sample results

The result of the critical value is 2.228. The result showed that the calculated t value is smaller than the critical value (1.5451<2.228)

which shows that means are not significantly different. The value of p with the associated t value generated 0.153366 which proves

that there are no significant changes.

Next statistical test which is carried out is ANOVA test which shows the analysis of variance and determines that any of the

differences between the means are statistically significance comparing the p value to the significance level to assess the null

hypothesis.

The ANOVA result shows that the f-ratio value is 2.38721 and the related p value extracted from the statistical analysis is .138009

which shows the result is not significant.

Table 3

6. Conclusion
The experiment, analysis and results shows that null hypothesis gets failed to reject. There are no significant changes in the result.

Files of any format when attached with steganography tools with or without encryption and sent over to the receiving end has a clear

chance of integrity of the files to be retained. The same holds for the dual layer of steganography where the file undergoes double

steganography process and the integrity still is retained. The experiment also concludes even for large message files like ISO, VHD

etc. the integrity of the files remained intact with some quality changes in the cover file. The steganography file system however failed

in integrity testing and also showed that files of any format is stored along with some IO operations in the Stego file system has lesser

or no chances of integrity and recovery.

7. Acknowledgements

I am thankful to my project guide who has supported me enormously in the experiment and also my sincere thanks to professors and

friends for the encouragement. This work was supported in part by a grant from the National Science Foundation.

8. References

i. http://en.wikipedia.org/wiki/Steganography

ii. Qi, Qilin., “A Study on counter measures against steganography: An Active Warden Approach”, The Graduate College at the

University of Nebraska, United States, Degree of Master of Science, 2013, pp. 63-65.

iii. Saini, Manisha. and Saini, Gaurav., “Steganography and tools used for steganography”, International journal of scientific and

engineering research, January 2014, pp. 1693-1697.

iv. Cheddad, Abbas., Condell, Joan., Curran, Kevin., and Kevitt, Mc. Paul., “Digital image steganography: Survey and analysis

of current methods”, Signal Processing, 2010, pp. 727-752.

v. Thakre, Ketki., and Chitaliya, Neha., “Dual Image Steganography for communicating high security information”,

International journal of engineering and innovative technology, July 2014, pp. 7-12.

vi. Choudhary, Kaustubh., “Image Steganography and Global Terrorism”, Global Security Studies, 2012, pp. 115-135.

vii. Borse, Govinda., Anand, Vijay., and Patel, Kailash., “Exploring an ancient art of hiding information from past to the future”,

International journal of engineering and innovative technology, 2013, pp. 192-194.

viii. Michaud, Erin., “Current Steganography Tools and Methods”, SANS institute, April 2003.

ix. Sharma, Anshu., and Sharma, Deepti., “Research on Analysis of Different Image Steganography Techniques”, International

Journal of Engineering Sciences and Research Technology, June 2014, pp. 570-577.

x. Jokay, Matus., and Kosdy, Martin., “Steganographic file system based on JPEG files”, Tatra Mountains Mathematical

Publications, 2013, pp. 65-83.

xi. Miller, Barret., “Steganography in IPV6”, Bachelor of Science in Computer Science, University of Arkansas, Fayetteville,

United States, 2008.

