
Desynchronization: Self-Organizing Algorithms for Periodic Resource
Scheduling

Ankit Patel, Julius Degesys, Radhika Nagpal
Harvard University, Division of Engineering and Applied Sciences, Cambridge, MA 02139

{abpatel,degesys,rad}@eecs.harvard.edu

Abstract

The study of synchronization has received much atten-
tion in a variety of applications, ranging from coordinating
sensors in wireless networks to models of fireflies flashing in
unison in biology. The inverse problem of desynchroniza-
tion, however, has received little notice. Desynchronization
is a powerful primitive: given a set of identical oscilla-
tors, applying a desynchronization primitive spreads them
throughout the period, resulting in a round-robin schedule.
This can be useful in several applications: medium access
control in wireless sensor networks, designing fast analog-
to-digital converters, and achieving high-throughput traf-
fic intersections. Here we present two biologically-inspired
algorithms for achieving desynchronization: DESYNC and
INVERSE-MS. Both algorithms are simple and decentral-
ized and are able to self-adjust to the addition and removal
of agents. Furthermore, neither requires a global clock or
explicit fault detection. We prove convergence, compute
bounds for the running time, and assess the various trade-
offs. To our knowledge, the theory of self-organizing desyn-
chronization algorithms is presented here for the first time.

1 Introduction

Fireflies have fascinated scientists and mathematicians
alike with the phenomenon of mutual synchronization. In
Southeast Asia, thousands of fireflies synchronize their
flashing despite being spread over many miles. Mathemat-
ical models of this peculiar phenomenon remained elusive
until the seminal works of Peskin [7] and Mirollo and Stro-
gatz [6]. They were able to define a general class of local
“flashing” algorithms that lead to global synchrony. Due to
their simplicity and implicit fault-tolerance, these models
have been easily extended to applied domains that require
robust and accurate synchronization, such as wireless sen-
sor networks [4, 5, 11].

Despite the popularity of synchronization, the “inverse”
problem of spreading identical oscillators into a round-
robin schedule has received surprisingly little attention.
Here we define a new primitive, desynchronization, that ad-
dresses this inverse problem. Our motivation stems from
biology: cells, acting as oscillators, control animal gaits
and regulate heart valves through desynchronization. Many
problems in multi-agent systems also require desynchro-
nization. For example, in a wireless sensor network, nodes
can avoid collisions and message loss by desynchronizing
their transmission times. Similarly, sensor nodes can desyn-
chronize their sampling times to distribute the energy cost
while still providing efficient coverage.

In this paper we present two self-organizing, self-
maintaining desynchronization algorithms: DESYNC and
INVERSE-MS. DESYNC is inspired by particle diffusion
and uses a simple local “spreading” rule to establish a
global desynchronization. In contrast, INVERSE-MS is
adapted from classic models of firefly synchronization [6].
INVERSE-MS is very fast but also brittle: it requires spe-
cialized assumptions that strongly limit its applicability. On
the other hand, DESYNC is slower but more robust to mes-
sage loss, message delay, and node birth and death.

Both algorithms require no centralized control, no global
clock, and only a small, constant amount of state per agent.
For both algorithms, we prove convergence, and analyti-
cally compute and compare convergence rates as a func-
tion of the number of nodes. Both algorithms are self-
maintaining: when the number of nodes changes, they auto-
matically adapt to reestablish a perfect round-robin sched-
ule without any explicit fault detection. The simplicity
of the self-organizing desynchronization algorithms allows
them to work in a wide variety of settings. We describe
several potential applications and explore the constraints
involved. We also briefly discuss an implementation of
DESYNC on TinyOS Telos motes and its application to
TDMA, the full details of which are available elsewhere [1].

The main contribution of this paper is the design and
analysis of two new self-organizing desynchronization al-
gorithms. To the best of our knowledge, the detailed the-

ory of self-organizing desynchronization algorithms is pre-
sented here for the first time.

The paper is organized as follows. Section 2 motivates
the need for a desynchronization primitive, examines poten-
tial applications, and discusses previous work. Section 3 de-
fines the general desynchronization framework and sections
4 and 5 present the DESYNC and INVERSE-MS algorithms.
Section 6 compares the performance of the algorithms with
respect to several metrics, and helps guide the application-
dependent choice of an algorithm. A real implementation of
the DESYNC algorithm in a sensor network testbed is pre-
sented in Section 7. Conclusions and future work are in
Section 8.

2 Motivation and Background

Resource scheduling is defined as the ability to organize
a schedule amongst competing agents that provides fair, re-
sponsive, and exclusive access to a shared resource. The re-
source scheduling problem rears its head in many settings,
some of which are discussed below. The simplest solution
is to use a round-robin schedule: it guarantees every con-
tending agent access to the resource before any other agent
gets access again. If each agent’s slot (uncontested access
to the resource for a period of time) is equally long, then a
round-robin schedule provides an equitable solution.

Round-robin scheduling requires agents to agree on (1)
the access order and (2) the time of the accesses. Most sys-
tems today come to this agreement by allowing all agents
access to a global clock and computing a static access
order ahead of time. But a centralized mechanism can be
costly and error-prone in a dynamic distributed setting.
We discuss some real applications where a decentralized
mechanism is desirable.

TDMA in Wireless Networks. In a wireless network,
neighboring nodes share a resource: the communication
channel. Two nodes transmitting at the same time causes a
collision and leads to message loss. Time Division Multiple
Access (TDMA) is a protocol where nodes agree upon a
round-robin schedule and take turns sending data. This
approach provides collision-free message transmission and
fully utilizes the bandwidth under high-load conditions.
However, traditional implementations suffer from two
problems: (1) they require that nodes have access to a
common notion of global time, and (2) the schedule is
fixed and therefore bandwidth is wasted if only a fraction
of the nodes need to transmit. Access to a global clock
and renegotiating schedules to recover bandwidth are both
costly, especially when message loads are unpredictable.
As a result, most systems use simpler contention-based
protocols (e.g. 802.11) despite their poor performance
under high load [10].

Analog-to-Digital Converters. In signal processing,
an analog-to-digital converter (ADC) creates a digital
representation of an analog signal by sampling the signal at
a uniform rate. One method to design a fast ADC is to take
n identical ADC units and interleave their sampling, thus
creating a single sampler that is n times faster. Thus, fast
sampling is achieved by desynchronizing the ADC units.
Typical implementations have a single global clock that
produces the base frequency and each ADC unit can be
staggered by adding increasing numbers of delay elements.
However such a circuit must be extremely precisely de-
signed to achieve uniform sampling - any errors in design
time can not be corrected in real-time [2].

Traffic Intersections. Here the agents are cars and the
resource is the intersection. Signal lights act as locks on
the intersection to prevent collisions. An autonomous
intersection management system that allows the cars to
desynchronize their use of the intersection could eliminate
the need for traffic lights. Thus, desynchronization could
allow for more efficient interleaving of the traffic streams,
thereby increasing throughput and reducing the wait time
at intersections [3].

At present, each of these applications invokes a global
leader, in the form of a clock or a lock. But a centralized
mechanism has many disadvantages: high implementation
complexity, lack of robustness, and bottlenecks under high
loads. Thus, the potential benefits of a decentralized desyn-
chronization algorithm are significant.

3 Desynchronization Framework

In this section we present a general framework for
exploring decentralized algorithms for desynchronization.
The framework models nodes as pulse-coupled oscillators,
an idea introduced by Peskin [7] and later developed by
Mirollo and Strogatz in the context of cardiac/firefly syn-
chronization [6].

Suppose there are n nodes that can communicate with
each other. Each node is an oscillator with the same funda-
mental frequency ω and period T = 1/ω. Let the nodes be
labeled in clockwise order (e.g. Figure 1(a)). Throughout
the paper, node labels are always 1-based and taken modulo
n. Let φi ∈ S = [0, 1] denote the phase of node i, where
1 ≤ i ≤ n. For example, if φ2 = 0.75, then node 2 is 75%
of the way through its cycle. The phase neighbors of node
i are the nodes i ± 1. The system state is a column vector
~φ = [φi] ∈ Sn, representing the phases of all n oscillators.

The desynchronized state, or desynchrony, is any system
state ~φ∗ in which all n oscillators are evenly spread out in
phase, oscillating at the same frequency, as shown in Fig-

(a)

Finish

1

2

3

5

6

φ2

∆2

φ1

+

4

(b)

Finish

+

Figure 1. Desynchronization Framework. (a)
Nodes move clockwise on the circle at fre-
quency 1/T , where T is the period. Nodes
fire when they reach the finish line (red star).
φi denotes the phase of node i and ∆i rep-
resents the phase difference between con-
secutive oscillators. (b) The state of per-
fect desynchrony, where all nodes are evenly
spaced in phase, shown here for n = 6 nodes.

ure 1(b). Formally, we define desynchrony in terms of the
phase differences between neighboring oscillators by intro-
ducing a new set of delta-phase variables: ∆i ≡ φi − φi−1

(mod 1), as shown in Figure 1(a). Let d be the mapping
from ~φ to ~∆; that is, ~∆ = d(~φ). In these variables, the
desynchronized state is simply expressed as ∆∗

i = 1
n for all

i. Or, in vector form,

~∆∗ =
1n

n
=

(
1
n

1
n . . . 1

n

)T
. (1)

We can imagine nodes as beads moving clockwise on a ring
with constant velocity, as shown in Figure 1(a). When a
node crosses the finish line (φ = 1), it fires, and resets (φ =
0). Firing is a node’s way of communicating its phase to
other nodes. Upon hearing the firings of other nodes, a node
may respond by “jumping” forwards or backwards in phase.
From node i’s perspective, the general algorithm reads

φ′i = fi(Φ;α). (2)

Or in vector form,

~φ′ = f(Φ;α), (3)

where f : Sn → Sn is the jump function, φ′i is the phase
of node i after the jump, and Φ is the total phase history
of all oscillators. The jump function f proceeds as follows:
(1) examine Φ to determine which node i is next to fire, (2)
move all nodes forward in phase until node i reaches the
finish line, and (3) execute jumps fj for all nodes j 6= i. In
summary, f represents exactly one move-fire-jump event,
with node i firing and all nodes j 6= i jumping. Applying

(a)

Finish

ii-1

i+1

Midpoint

+ (b) +

Finish

Figure 2. Desynchronization Algorithms. (a)
DESYNC. After hearing a back neighbor i − 1
fire, node i jumps towards the midpoint of its
phase neighbors (open circle). (b) INVERSE-
MS. After hearing any node fire, all nodes
jump backwards. Nodes closer to reaching
the finish line jump further back, while nodes
earlier in their cycles take smaller jumps.

f a total of n times would execute exactly one round of n
firings.

Equation (3) is the most general form of a desynchro-
nization algorithm: each node jumps as a function of the
histories of some (or all) of the nodes. The parameter α ∈ R
is a jump size parameter that controls how far a node jumps.
When α = 0 there is no jumping, and when α > 0, a node
jumps a nonzero amount. Since α is fixed ahead of time, we
may sometimes suppress writing it for convenience.

Our main question is: How should an individual node
jump so that the whole system of identical nodes (all execut-
ing the same program) is driven to desynchrony? Or, math-
ematically speaking: What constraints on f are sufficient to
guarantee that a system of nodes can achieve desynchrony?
In the following sections, we will introduce two algorithms,
DESYNC and INVERSE-MS, that help to answer these ques-
tions.

4 DESYNC Algorithms

The DESYNC algorithm proceeds as follows. When node
i reaches the end of its cycle (φi = 1), it fires, thus notifying
all other nodes that it is beginning a new cycle. After node
i fires, it waits for node i− 1 to fire. When node i− 1 fires
(φi−1 = 1), node i jumps to a new phase φ′i according to
jump function f , as shown in Figure 2(a).

All DESYNC algorithms have the following three char-
acteristics: (1) nodes only use firing information from their
two phase neighbors, (2) nodes jump only once per period,
and (3) nodes stop jumping when the system reaches desyn-
chrony.

(a)
0 50 100 150 200

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time, t

P
h

as
e,

 Φ

(b)
0 50 100 150 200

0

0.5

1

1.5

2

2.5

3

3.5

Period

E
nt

ro
py

Desync−Stale
Inv. Strogatz(0.01)
Inv. Strogatz(0.001)
Desync−Ideal

(c)
5 15 25 35 45 50

0

1000

of Oscillators (n)

of

 P
er

io
ds

 R
eq

ui
re

d
(k

re
q
)

Desync−Ideal
Desync−Stale

Figure 3. Phase vs. Time and convergence rates for several DESYNC variants (n = 25 nodes, 200
rounds, near-synchronized initial condition randomly chosen within T/100 fraction of phase, α =
0.95). (a) Phase vs. Time (periods) for DESYNC-IDEAL . (b) Convergence rates as measured by entropy
of phase configurations. DESYNC-IDEAL is the fastest DESYNC variant, followed by DESYNC-STALE.
Stale information slows down convergence, as expected. INVERSE-MS is very fast for α = 0.01 since
all n nodes can jump at once, at the cost of steady state period lengthening. For α = 0.001, DESYNC
variants are much faster than INVERSE-MS. (c) Number of periods required to achieve ε-desynchrony
for ε = 10−3. Both DESYNC-IDEAL and DESYNC-STALE require O(n2) periods.

4.1 A General Criterion for Desynchrony

Here we provide general conditions on f that are suffi-
cient (but not necessary) for a system of n nodes governed
by f to be driven to desynchrony. We will apply these crite-
ria to the DESYNC class of algorithms. However, they also
apply in more general settings.

First, we note that the state of desynchrony is invariant to
an overall shift in phase: for all constants C, d(~φ∗ + C) =
d(~φ∗) = ~∆∗. Thus, it is natural to follow a system’s
desynchronization dynamics in the delta-phase variables,
~∆ = d(~φ). It is important to note that a vector ~∆ speci-
fies only the relative distances between nodes and gives no
information about the absolute phase of any node. It will
be useful to interpret ~∆ as a probability distribution. This
is possible because ∆i ≥ 0 for all i and

∑
i ∆i = 1. Thus,

~∆ ∈ Pn, where Pn is the set of all probability distributions
on n states.

Accordingly, we can define the system entropy as
H(~∆) = −∑

i ∆i ln(∆i). Maximum entropy, Hmax =
ln(n), corresponds to perfect desynchrony while minimum
entropy, Hmin = 0, corresponds to perfect synchrony. Us-
ing system entropy, we can define a quantitative measure of
desynchrony.

Definition The distance to desynchrony of a system state
~φ ∈ Sn is defined as ||~φ|| = Hmax −H(d(~φ)).

Note that for all ~φ ∈ Sn, ||~φ|| ≥ 0, and furthermore, ||~φ|| =

0 iff ~φ is in desynchrony. Using this measure, we can define
conditions on f that are sufficient to insure desynchrony.

Definition A jump function f : Sn → Sn is a desynchro-
nizer (or m−desynchronizer) if:

1. ||f(~φ∗)|| = ||~φ∗|| = 0.

2. There exists an integer m > 0 such that for all ~φ ∈ Sn,
||~φ|| > 0 =⇒ ||fm(~φ)|| < ||~φ||.

The definition insures that, given a system of nodes gov-
erned by a desynchronizer f , the following properties are
true: (1) if the system is in desynchrony, it will stay in
desynchrony, and (2) if the system is not in desynchrony,
then after m jumps it will be closer to desynchrony. With
this definition, we state our main result.

Theorem 1 (Desynchronizer ⇒ Desynchrony) Let f :
Sn → Sn be a desynchronizer. Then for all initial condi-
tions, n oscillators whose dynamics are governed by jump
function, f , will be driven to desynchrony.

Proof Since f is a desynchronizer, the system’s distance
to desynchrony strictly decreases after every m jumps, for
some fixed m > 0 . And since ||~φ|| ≥ 0 for all ~φ ∈ Sn,
it must be that ||~φ|| → 0. Hence, the system of nodes is
driven to desynchrony, irrespective of initial conditions. ¤

The inspiration for the desynchronizer criterion comes
from the natural process of chemical diffusion. Given an

initially non-uniform concentration gradient, the diffusion
process smooths out sharp peaks and local disparities, until
the gradient becomes completely flat. For our purposes, the
vector ~∆ plays the role of the concentration gradient and
the desynchronization algorithm plays the role of diffusion,
by locally increasing the entropy of the system. Eventually,
the local smoothing of ~∆ yields the uniform distribution,
corresponding to perfect desynchrony.

Given the desynchronizer criterion, we can now design
desynchronization algorithms. An important design consid-
eration is how quickly phase information is propagated to
other nodes. Firings serve as messages to other nodes and if
they are not received in time, a node may make a jump with
“stale” information. Hence, we have designed two variants
of the DESYNC algorithm: DESYNC-IDEAL and DESYNC-
STALE. DESYNC-IDEAL works under idealized conditions
where phase information is propagated instantaneously. On
the other hand, DESYNC-STALE can handle stale informa-
tion about the phases of other oscillators. For each variant,
we present the algorithm, prove convergence, and compute
rates of convergence.

4.2 DESYNC-IDEAL

The first DESYNC algorithm assumes that nodes can al-
ways access the exact positions of their phase neighbors. In
this algorithm, node i fires and then waits for node i− 1 to
fire (when φi−1 = 0). At this point, node i takes a “global
snapshot” of the system, acquiring the exact phases of nodes
i±1. Node i then computes the midpoint of its phase neigh-
bors, mid(φi−1, φi+1) = (φi−1+φi+1)/2 = φi+1/2 (since
φi−1 = 0). It then jumps a fraction α of the way towards
that midpoint, as shown in Figure 2(a). All together, the
algorithm, called DESYNC-IDEAL, reads

φ′i = fIDEAL,i(~φ; α)
= (1− α) · φi + α ·mid(φi−1, φi+1) (4)

Note that here a firing’s only purpose is to trigger a node
to take a snapshot and make a jump. We will make more
substantial use of firings in the next section when we define
a desynchronization algorithm that works in more realistic
settings. But for now, we prove that the DESYNC-IDEAL
algorithm achieves desynchrony.

Theorem 2 (DESYNC-IDEAL Convergence) For all ini-
tial conditions and α ∈ (0, 2), n oscillators whose dy-
namics are governed by DESYNC-IDEAL will be driven to
desynchrony.

Proof To prove convergence, we will show that the jump
function for DESYNC-IDEAL is a 1-desynchronizer. We
compute the dynamics in the delta-phase variables ∆i. By
equation (4), we know that node i− 1’s firing equalizes the

phase distances between node i and its neighbors i ± 1 so
that

∆′
i = (1− α)∆i + α

∆i + ∆i+1

2
(5)

For α ∈ (0, 2), ∆′
i is closer to the average of ∆i and ∆i+1.

By the convexity of H, we have that H(~∆′) > H(~∆) [9].
Also, fIDEAL leaves the state of desynchrony unchanged.
Thus, fIDEAL is a 1-desynchronizer, and so by Theorem 1
DESYNC-IDEAL converges to desynchrony, irrespective of
initial conditions. ¤

4.3 DESYNC-STALE

The DESYNC-IDEAL algorithm is an idealization be-
cause in most realistic settings a node cannot take global
snapshots to get information about its phase neighbors. This
is especially true in settings where message delays or unre-
liable links make it difficult to acquire the most recent up-
dates on neighboring phases. Instead, nodes must use their
firings to communicate phase information. Since nodes may
jump in response to other nodes’ firings, information from
the last firings may not always be accurate. However, we
show that if a node’s jump size α is restricted, nodes can
still use this “stale” information to desynchronize.

Here we introduce DESYNC-STALE, a DESYNC variant
that relaxes the assumption of perfect phase information.
We proceed by slightly modifying the DESYNC-IDEAL al-
gorithm in (4) to use a midpoint estimate rather than the
actual midpoint.

In general, node i uses its memory to estimate the mid-
point between its phase neighbors i ± 1, before making a
jump towards that midpoint. From node i’s perspective, the
DESYNC-STALE algorithm reads

φ′i = fSTALE,i(Φ; α)

= (1− α) · φi + α ·mid(φi−1, φ̃i+1), (6)

where φ̃i+1 is a stale estimate of the true φi+1. Remember
that node i executes a jump according to (6) only after it
hears node i − 1 fire. This means that node i always has
accurate information about φi−1. But, it may have stale
information about φi+1, since node i + 1 may have jumped
when node i fired.

To illustrate DESYNC-STALE and clarify the origin of
“stale” information, we begin with a simple detailed exam-
ple. Consider a network of three nodes—A, B, and C—
initialized with phases φA = 0.6, φB = 0.7, and φC = 0.9.
Each node begins with no knowledge of the other nodes’
phases. Node C fires first. Node B hears this firing and ob-
serves that its own phase φB = 0.8. It uses this information
to record that node C is 0.2 ahead of it. Node B then fires,
and nodes A and C record B’s relative position accordingly.
Finally, when node A fires (φA = 0), node B knows that it

is 0.1 ahead of node A and 0.2 behind node C. Node B uses
these two pieces of information to make its jump towards
the midpoint, mid(φA, φC) = (0 + 0.3)/2 = 0.15.

The key point is that Nodes A and C are not aware of this
jump, since node B has no means of communicating its new
location until its next firing. Thus, nodes A and C are left
with “stale” knowledge, φ̃B , of node B’s true position, φB .
Later on, when it is node A’s turn to jump, it can only use
this “stale” estimate of node B’s phase to compute a mid-
point. This is in contrast to DESYNC-IDEAL, where node
A could simply see the exact phases of both its neighbors.
Despite this “stale” information, we shall now prove that
DESYNC-STALE will still achieve desynchrony.

Theorem 3 (DESYNC-STALE Convergence) For all ini-
tial conditions and α ∈ (0, 1), n nodes whose dynamics
are governed by DESYNC-STALE will be driven to desyn-
chrony.

Proof The strategy is similar to that of Theorem 2, ex-
cept that we will show that the jump function for DESYNC-
STALE is an n-desynchronizer.

We compute the dynamics in the delta-phase variables
∆′

i = φ′i−1 − φ′i by taking the discrete difference of (6):

∆′
i = (1− α)∆i + α(

∆i−1 + ∆i+1

2
) (7)

In matrix-vector form, equation (7) is

~∆(k+1) = B(α)~∆(k) (8)

where k is the period number and B(α) = (1− α)I + αA.
The matrix A is a circulant matrix with entries Ai,i±1 = 1

2
and zeros elsewhere, where indices are taken modulo n.
Note that multiplication by B corresponds to exactly one
round of all n nodes firing and jumping in turn. Since B
is an averaging matrix and H is a convex function [9], we
have thatH(~∆(k+1)) > H(~∆(k)) for α ∈ (0, 1). Since each
round represents n jumps and since fSTALE leaves a state
of desynchrony unchanged (i.e. d(fSTALE(~φ∗)) = ~∆∗), we
have that fSTALE is an n-desynchronizer. Hence, by Theorem
1, DESYNC-STALE converges to desynchrony, irrespective
of initial conditions. ¤

4.4 Convergence Rates to Desynchrony

For real applications, how quickly a desynchronization
algorithm converges is important. Both DESYNC-IDEAL
and DESYNC-STALE are linear algorithms and so can be
represented as multiplications by some matrix A. Since the
largest eigenvalue of A is always 1, it is the second largest
eigenvalue, λ∗(A), that tells us how quickly the system is
driven to desynchrony [8]. From λ∗, we can compute how
many rounds the algorithm requires to become desynchro-
nized, as a function of n and α.

Definition Let |~∆| denote the desynchronization accuracy
of state ~∆ ∈ Pn, defined as the sum of the absolute de-
viations from perfect desynchrony. Mathematically, |~∆| =
|~∆ − ~∆∗|L1 =

∑n
i=1 |∆i − 1

n |. We say that a system of
nodes is ε-desynchronized if |~∆| < ε.

Using techniques from linear algebra and Markov Chain
theory, we can prove the convergence rates of both algo-
rithms.

Theorem 4 (DESYNC-IDEAL Rate of Convergence)
A system of n nodes whose dynamics are governed
by DESYNC-IDEAL will achieve ε-desynchrony in
O(n2 ln(1

ε)/α) rounds for n > 2 and α ∈ (0, 2).

Proof See Appendix. ¤

Theorem 5 (DESYNC-STALE Rate of Convergence)
A system of n nodes whose dynamics are governed
by DESYNC-STALE will achieve ε-desynchrony in
O(n2 ln(1

ε)/α) rounds for n > 2 and α ∈ (0, 1).

Proof See Appendix. ¤

Figure 3 shows results from simulations, confirming
Theorems 2-5. In each run, all nodes start out with ran-
domized phases, tightly clustered in a T/100 size region,
simulating a near-synchronous (worst-case) initial condi-
tion. Figure 3(a) shows that, despite both DESYNC algo-
rithms desynchronizing in O(n2) rounds, DESYNC-STALE
converges slower than DESYNC-IDEAL by a constant fac-
tor. Thus, for practical purposes, DESYNC-IDEAL can be
significantly faster. This is expected since DESYNC-STALE
uses stale information, which can lead to overshoot and os-
cillatory behavior, thus slowing down convergence. Figure
3(b) shows that the system entropy converges to Hmax at an
exponential rate. Figure 3(c) shows the number of periods,
kreq(n), required to reach accuracy ε = 10−3 as a function
of n, for α = 0.95. The resulting convergence times con-
firm Theorems 4 and 5.

5 Inverse-MS Algorithm

There exists another class of desynchronization algo-
rithms that are fundamentally different from the DESYNC
family. In this framework — inspired by the firefly syn-
chronization work of Mirollo and Strogatz [6] — when a
node fires, all of the other nodes jump instead of just one.
This implies that a node is affected by all other nodes, not
just its phase neighbors. Within this class, we examine the
INVERSE-MS algorithm, adapted and specialized from a
bio-synchronization algorithm proposed in [6].

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time(t)

P
ha

se
 o

f O
sc

ill
at

or
 1

 (
φ 1)

Inverse−Strogatz
Desync

Figure 4. Comparison of steady states for
DESYNC and INVERSE-MS algorithms. DESYNC
is strongly desynchronized and has a static
equilibrium with no jumping (red), while
INVERSE-MS is weakly desynchronized and
has a dynamic equilibrium, where each
node is always jumping backwards (blue).
Nonetheless, both algorithms achieve a
steady period.

Inverse-MS Algorithm. Assume that node n is the next
node to fire. After node n fires, all other nodes i 6= n jump
from phase φi to φ′i where

φ′i = fINVMS,i(~φ;α) =
{

1 i = n
(1− α)φi i 6= n

(9)

where α ∈ (0, 1) is a jumpsize parameter (see Figure 2(b)).
Note that all nodes (except the firing node n) jump at each
firing. After jumping, nodes are relabeled according to the
rule i → i + 1. In particular, node n − 1 becomes node n
and node n becomes node 1.

This algorithm does not produce the same type of desyn-
chrony as DESYNC. Instead, we will have to adopt a less
constraining definition of desynchronization in our analy-
sis.

Definition A set of nodes is weakly desynchronized if the
time between consecutive nodes’ firings are equal.

Weak desynchronization allows oscillators to accelerate
arbitrarily during their cycle, so long as the time between
consecutive node firings is identical for all nodes, say some
constant S ∈ (0, 1). Of course, strong desynchronization —
when S = T/n — is a special case of weak desynchroniza-
tion. Figure 4 highlights the difference between strong and
weak desynchronization by showing the phase trajectory of

a single oscillator under both the DESYNC and INVERSE-
MS algorithms.

Theorem 6 (INVERSE-MS Convergence) For all initial
conditions and for α ∈ (0, 1), n nodes whose dynamics are
governed by INVERSE-MS will be driven to (weak) desyn-
chrony in O(1

nα ln(n
ε)) rounds. However, the steady state

period is lengthened to

T ∗(n, α) =
nαT

1− (1− α)n
≈ nαT,

where the last approximation is for large n. Furthermore,
the time between consecutive firings is S ≈ αT for large n.

Proof We will show that INVERSE-MS can be expressed
as a linear dynamical system and we will solve for the fixed
point. We will also show that the fixed point is weakly
desynchronous, and that for small α, it approaches strong
desynchrony.

As with the DESYNC algorithms, it will be more conve-
nient to do the analysis in the delta-phase variables, ∆i. As
before, assume that node n fires. Using equation (9) and
accounting for the relabeling i → i + 1, we have that

∆′
i =

{
αT + (1− α)∆n i = 1
(1− α)∆i−1 i 6= 1 (10)

To solve for the fixed point ~∆∗, we use repeated substitu-
tion: ∆∗

n = (1 − α)∆∗
n−1 = . . . = (1 − α)n−1∆∗

1 =
(1− α)n−1[(1− α)∆∗

n + α]. Solving, we get

∆∗
i =

(1− α)i−1αT

1− (1− α)n
, (11)

which approaches T/n as α → 0, by L’Hospital’s Rule.
Thus, the fixed point of INVERSE-MS deviates from strong
desynchrony (∆∗

i = T/n) as a function of n, α, and i. But
the time between consecutive firings, S = ∆∗

1, is equal for
all nodes, and so ∆∗ is weakly desynchronized. In fact,
T ∗ = T ∗(n, α) = nS = n∆∗

1, corresponding to n iden-
tically sized slots. Substituting the expression for ∆∗

1 from
equation (11), we have the desired result for T ∗(n, α). The
proof of convergence rate is given in the Appendix. ¤

Comparison to DESYNC. The INVERSE-MS algorithm’s
convergence is much faster than DESYNC for certain val-
ues of α, since all n nodes jump after any single node’s
firing (Figure 3(b)). However, INVERSE-MS’s fast conver-
gence comes at a price: (1) the steady-state period T ∗ is
greater than the intrinsic oscillation period T (period length-
ening), (2) every node must listen to every other node’s fir-
ings, and (3) every node is always jumping backwards, even
in steady-state (dynamic equilibrium). Note that DESYNC
does not suffer from any of these problems, since each

node’s firing only affects its two phase neighbors and the
steady state is a static equilibrium. Figure 4 compares the
steady-state trajectory of a DESYNC node and an INVERSE-
MS node over two periods.

Some applications may require an accurate and precise
end-state period (e.g., time-interleaved analog-to-digital
converters). For large n, the period lengthening ratio
L(n, α) = T ∗/T ≈ nα is linear in the number of nodes,
n, and the jump-size parameter, α. A compensation strat-
egy by setting α = 1/n is undesirable since it depends on
the number of nodes, which maybe difficult to estimate ac-
curately in settings where nodes come and go frequently.
Nevertheless, if n is known and fixed ahead of time, α-
compensation yields a fast desynchronization algorithm.

6 Choosing the Right Algorithm for your Ap-
plication

Self-organizing desynchronization is a powerful prim-
itive that has many potential applications. The choice
of desynchronization algorithm depends greatly on the
constraints posed by the application environment. For
example, message loss in wireless networks makes it im-
possible for nodes to observe all firings. Therefore, using
an algorithm that is robust to missed firings is important.
In other settings, the need to establish a precise period may
outweigh all other concerns. To help guide the choice of a
desynchronization algorithm, we present a brief overview
of the tradeoffs (summarized in Table 1).

Convergence Rates. The rate of convergence is at
odds with period distortion and robustness to message loss.
A fast convergence rate means a quick response time to
node membership changes, but it can drastically affect
the periodicity of nodes’ firings (INVERSE-MS only, see
Section 5). A slow convergence rate means slower system
response time to nodes entering and leaving, but allows
for better periodicity and robustness to message loss. In
simulations, INVERSE-MS is the fastest of all algorithms
(see Figure 3) with the extra speed coming at the cost of a
large period distortion.

Message Loss. In many settings, including wireless
networks, message loss is an unavoidable reality. There-
fore, robustness to missed firings is important. Here, the
best option is to use a DESYNC variant, where missed
firings affect only immediate neighbors and the jumpsize
parameter α can be set to a low value in order to protect
against lost messages. In contrast, INVERSE-MS is
ill-suited for handling message loss. A missed firing in
INVERSE-MS means that many nodes fail to jump, thereby
altering several nodes’ periods. Furthermore, achieving
good desynchronization in networks with lossy links

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

R
el

at
iv

e
F

iri
ng

 T
im

e
(m

s)

Time (sec)

Figure 5. Relative Firing Times: 10 Telos
motes placed within communication range of
one another running a simple implementa-
tion of the DESYNC algorithm. Each node had
a firing timer that had a default frequency of
1 second. Upon expiration of the timer, each
node broadcasted a message to all other
nodes. Shown here is the firing times of each
node relative to an arbitrarily selected node
whose firing was clamped to the horizontal
axis. Note that the nodes achieve desynchro-
nization within 15 periods.

depends strongly on the algorithm’s ability to generalize
to a multi-hop topology. Preliminary results suggest that
INVERSE-MS does not converge in multi-hop networks.

Adding and Removing Nodes. In settings where
nodes enter and leave frequently (e.g. to conserve energy,
returning when triggered by an asynchronous event),
the system needs to respond quickly and reliably. Here
INVERSE-MS suffers a major drawback: its period is a
function of the number of nodes and so predicting it is
difficult. In extreme situations, where nodes enter and leave
incessantly, the period may become completely inaccurate.
In DESYNC variants, on the other hand, a node’s arrival
or departure takes longer to propagate to the rest of the
network, and so nodes are able to maintain a stable period
throughout the process, at the cost of a slower convergence
rate.

7 Implementation

To further highlight the simplicity of the algorithm, we
implemented the DESYNC algorithm along with a TDMA
variation. The full details and results of these implementa-
tions can be found in [1]. The algorithms were implemented
on several Telos wireless sensor motes running the TinyOS
operating system. In the tests, 4-20 nodes were all placed
within communication distance of one another on a table.

Properties INVERSE-MS DESYNC-IDEAL DESYNC-STALE

Convergence Rate O(log n/n) O(n2) O(n2)

Period Distortion O(nα) None None

Robust to Message Loss X X X
Add/Remove Nodes X X X X X

Converges on Multi-hop Topologya X X X

Application INVERSE-MS DESYNC-IDEAL DESYNC-STALE

ADC X X X
Multi-core Processor X X X

Wireless TDMA Xb X X
Intersection Traffic X X X

Table 1. Overview of tradeoffs involved in DESYNC and INVERSE-MS algorithm. X=Inappropriate/Bad,
X=Good, XX=Excellent. (a) Preliminary results for multi-hop networks are based on simulations of a
simple extension of the DESYNC algorithm. We are currently unable to find a way to extend INVERSE-
MS to multi-hop. Full discussion is left for future work. (b) We are not yet able to extend INVERSE-MS
to work in a TDMA setting.

Nodes:
Total Throughput (Kbps):

(normalized, %)
Max Individual (Kbps):
Min Individual (Kbps):

Message Loss (%):

4 10 20
60.8 57.9 53.0

(96.8) (92.2) (84.3)
15.2 5.8 2.8
15.2 5.6 2.4
0.2 0.3 0.5

Table 2. DESYNC-TDMA’s performance for
varying numbers of nodes over 60-second
runs. A comparison to other protocols can
be found in [1]. In our experiments, the maxi-
mum rate at which a single node could trans-
mit was 62.8 Kbps.

Each node was initialized with a common timer period of 1
second. Whenever a node’s timer expired, it broadcasted a
message to the rest of the nodes indicating its firing. Nodes
recorded the times of the nodes that fired immediately be-
fore it and after it relative to their own clocks. Once both
firings were heard, the nodes calculated the midpoint and
set their timer to fire a period later. The spacings of the fir-
ings of a typical run with 10 nodes are shown in Figure 5.
Qualitatively, desynchronization is achieved quite quickly.
For the ad-hoc TDMA protocol, we added code that had
nodes send as much data as they could during their time

slots. Table 2 shows abbreviated results of the performance
of this algorithm. Of particular interest is the ability of the
DESYNC-TDMA algorithm to share the bandwidth fairly
and fully amongst the nodes. Furthermore, there is a grace-
ful linear degradation with increasing numbers of nodes. In
short, the DESYNC algorithm’s simplicity and efficacy is a
great advantage for any application that requires the desyn-
chronization of fully-connected devices.

8 Conclusions and Future Work

As ad-hoc networks become more popular, algorithms
for achieving desynchronization in a decentralized, self-
organized manner will be increasingly important. In this pa-
per we have designed, analyzed, and implemented two such
algorithms: DESYNC and INVERSE-MS. The choice of al-
gorithm depends on particular constraints posed by the ap-
plication setting. INVERSE-MS is a good choice when the
number of nodes is constant, all connections are reliable, the
topology is fully-connected, and message delays/losses are
negligible. In short, INVERSE-MS is fast but not robust. On
the other hand, DESYNC is slower, but much more robust.
It can handle an arbitrary number of nodes, unpredictable
node arrivals and departures, and some message loss (re-
liability is only needed for the links between phase neigh-
bors). The simplicity of both algorithms allows for wide
applicability and we presented a successful implementation

of DESYNC on a real sensor network testbed [1].
The desynchronization algorithms presented in this

paper all rely on a single-hop, all-to-all topology. Thus, an
important problem for future work is assessing performance
on multi-hop networks. Computing an ideal desynchro-
nization schedule that maximizes the sum of the slot sizes
of all nodes seems hard, since the problem seems closely
related to graph coloring and task scheduling. However,
computing reasonable desynchronization schedules may be
tractable. Our preliminary results suggest that: (a) DESYNC
converges in multi-hop networks (though multiple steady
states are possible), and (b) the optimal schedule is related
to minimal graph coloring, and so is likely to be NP-hard.
In contrast, INVERSE-MS fails to converge after the
removal of just one edge from the topology, highlighting its
strong dependence on regular topologies.

References

[1] J. Degesys, I. Rose, A. Patel, and R. Nagpal. Desync: Self-
organizing desynchronization and tdma in wireless sensor
networks. In Proc. Conference on Information Processing
in Sensor Networks, Jan 2007.

[2] V. Divi. Scalable blind calibration of timing skew in high-
resolution time-interleaved adcs. In IEEE International
Symposium on Circuits and Systems, 2006.

[3] K. Dresner and P. Stone. Sharing the road: Autonomous
vehicles meet human drivers. In Proceedings of the Twenti-
eth International Joint Conference on Artificial Intelligence,
Hyderabad, India, January 2007., 2004.

[4] Y. Hong and A. Scaglione. Time synchronization and
reach-back communications with pulse-coupled oscillators
for uwb wireless ad hoc networks. In ”Proc. IEEE Confer-
ence on Ultra Wideband Systems and Technologies”, Nov
2003.

[5] D. Lucarelli and I. Wang. Decentralized synchronization
protocols with nearest neighbor communication. In Proc.
Conference on Embedded Networked Sensor Systems (Sen-
Sys), Nov 2004.

[6] R. Mirollo and S. Strogatz. Synchronization of pulse-
coupled biological oscillators. SIAM Journal of Applied
Math, 50(6):1645–62, Dec 1990.

[7] C. S. Peskin. Mathematical Aspects of Heart Physiology.
Courant Institute of Mathematical Sciences, New York Uni-
versity, New York, 1975.

[8] J. S. Rosenthal. Convergence rates for markov chains. SIAM
Review, 37(3):387–405, 1995.

[9] H. Stark and Y. Yang. Vector Space Projections: A Numeri-
cal Approach to Signal and Image Processing, Neural Nets,
and Optics. Wiley Series in Telecommunications and Signal
Processing, 1998.

[10] A. Tanenbaum. Computer Networks. Prentice Hall, 2002.
[11] G. Werner-Allen, G. Tewari, A. Patel, R. Nagpal, and

M. Welsh. Firefly-inspired sensor network synchronicity
with realistic radio effects. In Proc. Conference on Embed-
ded Networked Sensor Systems (SenSys), Nov 2005.

A Appendix

Here we present the proofs of the convergence rates of all
analyzed algorithms.

Proof of Theorem 4:DESYNC-IDEAL Convergence Rate
Define the jump matrix J = RP , representing a circular
re-labeling of the nodes (n → 1 → 2 . . .) followed by
one averaging operation R. In delta-phase coordinates, the
dynamics for a single firing are simply written as ~∆′ = J ~∆.
By induction on n, it can be shown that J has characteristic
polynomial ρ(λ; n) = λn − λn−1

2 − λ
2 . The eigenvalues

of J are the zeros of ρ. It can be shown via first-order
analysis of ρ that the eigenvalues of J always lie inside a
circle in the complex plane, centered at Cn = 1

2(n−1) with
radius Rn = 1 − Cn. The eigenvalues of J are bounded:
|λl(J)| < |Cn + Dne2πil/(n−1)|. Using these inequalities,
we can bound the sum

∑
l 6=0 |λl(J)|2k and use the results

from pp. 395-6 in [8] to get that the number of periods
require for DESYNC-IDEAL to reach ε-desynchrony is
O(n2 ln(1/ε)/α). ¤

Proof of Theorem 5:DESYNC-STALE Convergence Rate
Using λl(B) = (1−α)+αλl(A) and properties of permu-
tation matrices, we can compute the eigenvalues of B(α) as
λl(B(α)) = 1 − α + α cos(2πl

n). Thus, the second largest
eigenvalue λ∗ is the larger of λ1 and λbn/2c in absolute
value. For n > 2, we have λ∗ = 1− απ2/n2 ≤ e−π2α/n2

,
where we have used cos(z) ≤ 1 − z2/4 for 0 ≤ z ≤ √

6
and 1 − z ≤ e−z for any z. Let kreq(ε) denote the
minimum number of rounds required to reach desynchrony
to within an accuracy ε, defined as the k for which
δk = |~∆(k) − ~∆∗| < ε. Solving δ0(λ∗)k < ε yields

kreq(ε) = n2 ln(
δ0
ε)

π2α . Thus, kreq(ε) ∼ O(n2 ln(1
ε)/α). ¤

Proof of Theorem 6:INVERSE-MS Convergence Rate
Equation 9 can be written in matrix form as ~∆′ = C~∆,
where C represents the jump-and-permute steps of the
INVERSE-MSalgorithm. The matrix J has non-trivial
eigenvalues of magnitude 1 − α and thus solving the
equation (1 − α)F < ε for the number of firings F yields
F > 1

α ln(n
ε). Since there are n firings per round, the

number of rounds require to reach accuracy ε is F/n, which
is O(1

nα ln(n
ε)), as desired. ¤

