
OPENPUFF V4.01 STEGANOGRAPHY & WATERMARKING

Data hiding and watermarking made easy, safe and free
EmbeddedSW © 2018

Send your suggestions, comments, bug reports, requests
to embedded@embeddedsw.net – Skype "embeddedsw.company"

OPENPUFF HOMEPAGE

 LEGAL REMARKS P. 2

 OPENPUFF INSTALLATION: WINDOWS P. 3

 OPENPUFF INSTALLATION: LINUX P. 4

 FEATURES: WHY IS THIS STEGANOGRAPHY TOOL DIFFERENT FROM THE OTHERS? P. 7

 FEATURES: PROGRAM ARCHITECTURE P. 9

 FEATURES: ADAPTIVE ENCODING AND STEGANALYSIS RESISTANCE P. 13

 FEATURES: MULTI-CRYPTOGRAPHY & DATA OBFUSCATION P. 14

 WHAT IS STEGANOGRAPHY? P. 15

 WHAT IS DENIABLE STEGANOGRAPHY? P. 16

 WHAT IS MARKING? P. 18

 SUPPORTED FORMATS IN DETAIL P. 19

 SUGGESTIONS FOR BETTER RESULTS P. 24

 OPTIONS: BITS SELECTION LEVEL P. 26

 STEP BY STEP DATA HIDING P. 27

 STEP BY STEP DATA UNHIDING P. 31

 STEP BY STEP MARK SETTING P. 34

 STEP BY STEP MARK CHECKING P. 35

 STEP BY STEP DATA & MARK ERASING P. 36

OPENPUFF V4.01 - ENGLISH - 11/JUL/2018 1

http://embeddedsw.net/OpenPuff_Steganography_Home.html
skype:embeddedsw.company?call
mailto:embedded@embeddedsw.net

 LEGAL REMARKS

Remember: this program was not written for illegal use. Usage of this program that may violate your
country's laws is severely forbidden. The author declines all responsibilities for improper use of this
program.

No patented code or format has been added to this program.

THIS IS A FREE SOFTWARE:

This software is released under LGPL 3.0

You’re free to copy, distribute, remix and make commercial use of this software under the following
conditions:
 You have to cite the author (and copyright owner): WWW.EMBEDDEDSW.NET
 You have to provide a link to the author’s Homepage: WWW.EMBEDDEDSW.NET/OPENPUFF.HTML

BACK

OPENPUFF V4.01 - ENGLISH - 11/JUL/2018 2

http://www.embeddedsw.net/openpuff.html
http://www.embeddedsw.net/
http://www.gnu.org/licenses/lgpl.html

 OPENPUFF INSTALLATION: WINDOWS

This program was written to get you maximum privacy and compatibility:
 PORTABLE APPLICATION , no need to apply any installation procedure
 No dependency on other software/library
 Supported from WinNT up to Win10, 32bit and 64bit architectures

Extract compressed release and run OpenPuff.exe

Direct access to the main panel

BACK

OPENPUFF V4.01 - ENGLISH - 11/JUL/2018 3

http://en.wikipedia.org/wiki/Portable_application

 OPENPUFF INSTALLATION: LINUX

This program was written to get you maximum privacy and compatibility:
 The only dependency is on WINE
 Automated shell to install/run on UBUNTU provided (OpenPuff.sh)
 Automated shell to uninstall/cleanup on Ubuntu provided (Uninstall.sh)

INSTALL/RUN:

Extract compressed release and run OpenPuff.sh

You can also run OpenPuff.sh by command line

WINE NOT INSTALLED:

In case Wine is not installed on your system, automated shell will alert you.
Type [y] to confirm you accept to install Wine and continue.

Confirm [y] to accept to install Wine and continue

Confirm [y] to allow linux to download and install requested packages from internet

Wait for 100%

OPENPUFF V4.01 - ENGLISH - 11/JUL/2018 4

http://en.wikipedia.org/wiki/Ubuntu_(operating_system)
http://en.wikipedia.org/wiki/Wine_(software)

Wine has been succesfully installed. Run OpenPuff.sh again

WINE INSTALLED:

The first time you run Wine + OpenPuff, it may take some time to configure Wine environment.

Wine takes some time to setup environment, first time you run OpenPuff.sh

Direct access to the main panel

OPENPUFF V4.01 - ENGLISH - 11/JUL/2018 5

UNINSTALL/CLEANUP

To fully remove this program, be sure to run the automated shell:
 Removing Wine settings (~/.wine)
 Uninstalling Wine and dependecy packages

Run Uninstall.sh and confirm [y] to allow linux to uninstall

Wait for 100%

BACK

OPENPUFF V4.01 - ENGLISH - 11/JUL/2018 6

 FEATURES: WHY IS THIS STEGANOGRAPHY TOOL DIFFERENT FROM THE OTHERS?

OpenPuff is a professional steganography tool, with unique features you won’t find among any other
free or commercial software. OpenPuff is 100% free and suitable for highly sensitive data covert
transmission.
WHAT IS STEGANOGRAPHY?

Let’s take a look at its features

 [CARRIERS CHAINS]
Data is split among many carriers. Only the correct carrier sequence enables unhiding. Moreover,
up to 256Mb can be hidden, if you have enough carriers at disposal. Last carrier will be filled with
random bits in order to make it undistinguishable from others.

 [SUPPORTED FORMATS]
Images, audios, videos, flash, adobe.
SUPPORTED FORMATS IN DETAIL

 [LAYERS OF SECURITY]
Data, before carrier injection, is encrypted (1), scrambled (2), whitened (3) and encoded (4).
FEATURES: PROGRAM ARCHITECTURE

 [LAYER 1 - MODERN MULTI-CRIPTOGRAPHY]
A set of 16 modern 256bit open-source cryptography algorithms has been joined into a double-
password multi-cryptography algorithm (256bit+256bit).

 [LAYER 2 - CSPRNG BASED SCRAMBLING]
Encrypted data is always scrambled to break any remaining stream pattern. A new
cryptographically secure pseudo random number generator (CSPRNG) is seeded with a third
password (256bit) and data is globally shuffled with random indexes.

 [LAYER 3 - CSPRNG BASED WHITENING]
Scrambled data is always mixed with a high amount of noise, taken from an independent
CSPRNG seeded with hardware entropy.
OPTIONS: BITS SELECTION LEVEL

 [LAYER 4 - ADAPTIVE NON-LINEAR ENCODING]
Whitened data is always encoded using a non-linear function that takes also original carrier bits
as input. Modified carriers will need much less change and deceive many steganalysis tests
(e.g.: 2 test).
FEATURES: ADAPTIVE ENCODING AND STEGANALYSIS RESISTANCE

 [EXTRA SECURITY - DENIABLE STEGANOGRAPHY]
Top secret data can be protected using less secret data as a decoy.
WHAT IS DENIABLE STEGANOGRAPHY?

OPENPUFF V4.01 - ENGLISH - 11/JUL/2018 7

 [SOURCE CODE]
This program relies on the LIBOBFUSCATE system-independent open-source library. Users and
developers are absolutely free to link to the core library (100% of the cryptography & obfuscation
code), read it and modify it.

You’re kindly asked to send any libObfuscate porting/upgrade/customizing/derived sw, in order to
analyze them and add them to the project homepage. A central updated official repository will
avoid sparseness and unreachability of the project derived code.

BACK

OPENPUFF V4.01 - ENGLISH - 11/JUL/2018 8

http://embeddedsw.net/libObfuscate_Cryptography_Home.html

 FEATURES: PROGRAM ARCHITECTURE

A high-level global description of OpenPuff’s architecture
 data is split among carriers
 each carrier is associated to a random initialization vector array (IVS)
 text passwords (32 characters = 256bit) are associated (KDF4) to hexadecimal passwords
 data is first encrypted with two 256bit KEYS (A) (B), using multi-cryptography
 encrypted data is then scrambled, with a third key (C), to break any remaining stream pattern
 scrambled data is then whitened (= mixed with random noise)
 whitened data is then encoded using a function that takes also original carrier bits as input
 modified carriers receive the processed stream

…

…

…

OPENPUFF V4.01 - ENGLISH - 11/JUL/2018 9

Random Engine (CSPRNG)

IVs [16x] 2/N (128bit)

IVs [16x] 1/N (128bit)

IVs [16x] N/N (128bit)

Data 1/N Data N/N

 A B Encryption (CSPRNG)

 C Scrambling (CSPRNG)

Carrier 1/N

ModCarrier 1/N ModCarrier 2/N

Carrier N/N

ModCarrier N/N

Data 2/N

Whitening (CSPRNG)

Carrier 2/N

 A Pssw
KDF

4

Adaptive Encoding

Carrier Engine

 B Pssw

 C
Pssw

http://en.wikipedia.org/wiki/Key_(cryptography)
http://en.wikipedia.org/wiki/KDF
http://en.wikipedia.org/wiki/Initialization_vector

Cryptography is a multi step process
 each carrier gets an independent setup

CarrierSetupi = { IVsi , CSPRNGi , Keysi }
 each cipher gets an independent setup

Cipherj = { IVj , Keyj }
 each data block is processed with a different cipher, selected using the CSPRNG

Carrieri CryptedBlockk = r Rand-i () ; Cipherr (IVr , Keyr , Carrieri Blockk)

 …

 …

Modified carriers receive
 an encrypted copy of (AES) its initialization vector array

CryptedIVsn = Crypt (IVsn , CryptedIVsn-1)
 processed data

…

OPENPUFF V4.01 - ENGLISH - 11/JUL/2018 10

CSPRNG-i

Carrieri (128bit IN)
Block 1/N

Carrieri (128bit IN)
Block 2/N

Carrieri (128bit IN)
Block N/N

Carrieri (128bit OUT)
AES(Block1/N)

Carrieri (128bit OUT)
MARS(BlockN/N)

Carrieri (128bit OUT)
RC6(Block2/N)

RAND-i () = MARS

IVs [16x] 1/N

AES

ModCarrier 1/N

Carrier Engine

IVs [16x] 2/N IVs [16x] N/N)

AES AES

ModCarrier 2/N ModCarrier N/N

RAND-i () = AES RAND-i () = RC6IVsi [16x]
(128bit)

OpenPuff implements a cryptographically secure pseudo random number generator (CSPRNG) using
AES-256 encryption. Block-based secure algorithms running in Counter-Mode (CTR) behave, by
construction, as a random engine.

A good hardware source of starting entropy has been provided, not depending on any third-party
library or system-API. Threads are always scheduled by the OS in an unpredictable sequence (due to
an unavoidable lack of timing accuracy), easily allowing to get a significant amount of EXECUTION RACE
CONDITION . N threads run in parallel, incrementing and decrementing shared values that, after a while,
turn into random values.

…

OPENPUFF V4.01 - ENGLISH - 11/JUL/2018 11

CTR (128bit)Entropy

Key (256bit)

Random

Random Engine (CSPRNG)
128bit Blocks - 256bit Key - CTR

 AES

Thread 1/N Thread 2/N Thread N/N

Shared values

Entropy Random Engine (CSPRNG)

http://en.wikipedia.org/wiki/Race_condition
http://en.wikipedia.org/wiki/Race_condition
http://en.wikipedia.org/wiki/CSPRNG

Testing has been performed on the statistical resistance of the CSPRNG and the multi-wrapper, using
the well known PSEUDORANDOM NUMBER SEQUENCE TEST PROGRAM - ENT .

Provided results are taken from 64Kb, 128Kb, ... 256Mb samples:

 bit entropy test resistance:
>7.9999xx / 8.000000 reference: >7.9

 compression test resistance (size reduction after compression):
0% reference: <1%

 chi-squared distribution test resistance:
20% < deviazione < 80% reference: >10%, <90%

 mean value test resistance:
127.4x / 127.5 reference: >127, <128

 Monte Carlo test resistance:
errore < 0.01% reference: < 1%

 serial correlation test resistance:
< 0.0001 reference: < 0.01

BACK

OPENPUFF V4.01 - ENGLISH - 11/JUL/2018 12

http://www.fourmilab.ch/random/

 FEATURES: ADAPTIVE ENCODING AND STEGANALYSIS RESISTANCE

Security, performance and steganalysis resistance are conflicting trade-offs.

[Security vs. Performance]: Whitening
 Pro: ensures higher data security
 Pro: allows deniable steganography
 Con1: requires a lot of extra carrier bits

[Security vs. Steganalysis]: Cryptography + Whitening
 Pro: ensure higher data security
 Con2: their random-like statistical response marks carriers as more “suspicious”

Should we then be concerned about OpenPuff’s STEGANALYSIS RESISTANCE ? Data, before carrier
injection, is encrypted (1), scrambled (2) and whitened (3). Do these 3 steps turn a small amount of
hidden data into a big chunk of suspicious data?

A new security layer has been added at the bottom of the data process. Whitened data is always
encoded using a non-linear function that takes also original carrier bits as input. Modified carriers will
need much less change (Con1) and, lowering their random-like statistical response, deceive many
steganalysis tests (Con2).

"DEFENDING AGAINST STATISTICAL STEGANALYSIS " (Niels Provos)

"CONSTRUCTING GOOD COVERING CODES FOR APPLICATIONS IN STEGANOGRAPHY " (Jessica Fridrich)

The provided coding implementation is a novel unpublished function (built from scratch) that ensures
 output password dependence
 high (50%) embedding efficiency
 low (<20%) change rate

BACK

OPENPUFF V4.01 - ENGLISH - 11/JUL/2018 13

ModCarrierCarrier

Encrypt | Scrambling | Whitening

Encoding

Data

0 111

0 110

0 101

0 010

0 111

http://embeddedsw.net/doc/Openpuff_paper_Constructing_good_covering_codes_for_applications_in_steganography.pdf
http://www.citi.umich.edu/u/provos/papers/defending.ps
http://en.wikipedia.org/wiki/Steganalysis

 FEATURES: MULTI-CRYPTOGRAPHY & DATA OBFUSCATION

FAQ 1: WHY DIDN’T YOU SIMPLY IMPLEMENT A STANDARD AES-256 OR RSA-1024?

Modern open-source cryptography
 has been thoroughly investigated and reviewed by the scientific community
 it’s widely accepted as the safest way to secure your data
 fulfills almost every standard need of security

OpenPuff doesn’t support any CONSPIRACY THEORY against our privacy (SECRET CRACKING BACKDOORS ,
intentionally weak cryptography designs, …). There’s really no reason not to trust standard modern
publicly available cryptography (although some old ciphers have been already CRACKED).

Steganography users, however, are very likely to be hiding very sensitive data, with an unusually high
need of security. Their secrets need to go through a deep process of data OBFUSCATION in order to be
able to longer survive forensic investigation and hardware aided brute force attacks.

FAQ 2: IS MULTI-CRYPTOGRAPHY SIMILAR TO MULTIPLE-ENCRYPTION?

Multi-cryptography is something really different from MULTIPLE-ENCRYPTION (encrypting more than once).
There’s really no common agreement about multiple-encryption’s reliability. It’s thought to be:
 better than single encryption
 weak as the weakest cipher in the encryption queue/process
 worse than single encryption

OpenPuff supports the last thesis (worse) and never encrypts already encrypted data.

FAQ 3: IS MULTI-CRYPTOGRAPHY SIMILAR TO RANDOM/POLYMORPIHC-CRYPTOGRAPHY?

Random-cryptography, a.k.a. polymorphic cryptography, is a well-known SNAKE-OIL CRYPTOGRAPHY .
Multi-cryptography is something completely different and never aims to build some better, random or
on-the-fly cipher.

OpenPuff only relies on stable modern open-source cryptography.

FEATURES: PROGRAM ARCHITECTURE

BACK

OPENPUFF V4.01 - ENGLISH - 11/JUL/2018 14

http://en.wikipedia.org/wiki/Snake_oil_(cryptography)
http://en.wikipedia.org/wiki/Multiple_encryption
http://en.wikipedia.org/wiki/Obfuscation
http://en.wikipedia.org/wiki/EFF_DES_cracker
http://en.wikipedia.org/wiki/Backdoor_(computing)
http://en.wikipedia.org/wiki/Conspiracy_theory

 WHAT IS STEGANOGRAPHY?

It's a SMART WAY to hide data into other files, called carriers. Modified carriers will look like the original
ones, without perceptible changes. Best carriers are videos, images and audio files, since everybody
can send/receive/download them without suspects.

The steganography process is highly selective and adaptive, with a minimum payload for each carrier.
Carriers with a maximum hidden data amount less than the minimum payload will be discarded.
 +256B IV
 +16B a cryptography block
FEATURES: PROGRAM ARCHITECTURE

There’s no CARRIER bytes threshold during the marking process.
WHAT IS MARKING?

WHY SHOULD I NEED THIS TECHNIQUE?

You don't need this technique if your data
 can be explicitly sent or stored in altered suspicious format.

You may be interested in this technique if your data
 needs hiding without turning into suspicious format.
 have to be easily accessible by everyone, but retrievable only by people acquainted with your

secret intent.

BACK

OPENPUFF V4.01 - ENGLISH - 11/JUL/2018 15

http://en.wikipedia.org/wiki/Steganography

 WHAT IS DENIABLE STEGANOGRAPHY?

DENIABLE ENCRYPTION/STEGANOGRAPHY is a decoy based technique that allows you to convincingly deny
the fact that you’re hiding sensitive data, even if attackers are able to state that you’re hiding some
data. You only have to provide some expendable decoy data that you would plausibly want to keep
confidential. It will be revealed to the attacker, claiming that this is all there is.

How is it possible? Encrypted and scrambled data, before carrier injection, is whitened (FEATURES:
PROGRAM ARCHITECTURE) with a high amount of noise (OPTIONS: BITS SELECTION LEVEL). Decoy data can
replace some of this noise without loosing final properties of CRYPTANALYSIS RESISTANCE .

Sensitive data and decoy data are encrypted using different passwords. You have to choose two
different sets of different passwords.

Example:

Sensibile data: Password (A) “FirstDataPssw1”
Password (B) “SecondDataPssw2”
Password (C) “AnotherDataPssw3”

(A ∩ B) 70%, (A ∩ C) 67%, (B ∩ C) 68%, HAMMING DISTANCE ≥ 25%
 ≠ ≠ ≠

Decoy data: Password (A’) “FirstDecoyPssw1”
Password (B’) “SecondDecoyPssw2”
Password (C’) “AnotherDecoyPssw3”

(A’ ∩ B’) 72%, (A’ ∩ C’) 60%, (B’ ∩ C’) 70%, Hamming distance ≥ 25%

OPENPUFF V4.01 - ENGLISH - 11/JUL/2018 16

N
O
R
M
A
L

A
T
T
A
C
K

Whitening
Data

Noise Data

Data

ise
Whitening

SecretData

SecretPasswords

DecoyData
DecoyPasswords

No

Hide
DecoyPasswords DecoyData

Unhide

Unhide
SecretData

SecretPasswords

http://en.wikipedia.org/wiki/Hamming_distance
http://en.wikipedia.org/wiki/Cryptanalysis
http://en.wikipedia.org/wiki/Deniable_encryption

Each password has to be different (at bit level) and at least 8 characters long.

Example: “DataPssw1” (A) “DataPssw2” (B) “DataPssw3” (C)

(A) 01000100 01100001 01110100 01100001 01010000 01110011 01110011 01110111 00110001 …
(B) 01000100 01100001 01110100 01100001 01010000 01110011 01110011 01110111 00110010 …
(C) 01000100 01100001 01110100 01100001 01010000 01110011 01110011 01110111 00110011 …

(A ∩ B) 98%, (A ∩ C) 99%, (B ∩ C) 99%, Hamming distance < 25% = KO

Example: “FirstDataPssw1” (A) “SecondDataPssw2” (B) “AnotherDataPssw3” (C)

(A) 01000110 01101001 01110010 01110011 01110100 01000100 01100001 01110100 01100001 …
(B) 01010011 01100101 01100011 01101111 01101110 01100100 01000100 01100001 01110100 …
(C) 01000001 01101110 01101111 01110100 01101000 01100101 01110010 01000100 01100001 …

(A ∩ B) 70%, (A ∩ C) 67%, (B ∩ C) 68%, Hamming distance ≥ 25% = OK

You will be asked for
 two different sets of different passwords
 a stream of sensitive data
 a stream of decoy data compatible (by size) with sensitive data

∑ k { 1, N-1 } used_carrier_bytes(carrk) < Sizeof(Decoy) ≤ ∑ k { 1, N } used_carrier_bytes(carrk)

Example:

Carriers Carrier bytes SensibleData DecoyData
+Carr (1/N) 32 X Used

… 2688 X Used
+Carr (N-1/N) 48 X Used
+Carr (N/N) 64 Not used

Total = 2832 Total = 2795 2720 < Size ≤ 2768

BACK

OPENPUFF V4.01 - ENGLISH - 11/JUL/2018 17

 WHAT IS MARKING?

Marking is here stated as the action of signing a file with your copyright mark (best known as
WATERMARKING). This program does it in a steganographic way, applied to videos, images and audio
files. Your copyright mark will be invisible, but accessible by everyone (using this program), since it
won't be password protected.

WHY SHOULD I NEED THIS TECHNIQUE?

You don't need this technique if your copyright mark
 needs to be clearly visible
 has to be independent from graphic/audio data, therefore capable of surviving editing operations

You may be interested in this technique if your copyright mark
 needs to be invisible
 has to be dependent from graphic/audio data, therefore incapable of surviving editing operations
 has to be accessible by everyone (using this program)

A possible usage of this technique could be: insertion of an invisible copyright mark into registered files
that have to be publicly shared. Illegally manipulated copies will maybe look like original ones, but will
partially/totally loose the invisible copyright mark.

BACK

OPENPUFF V4.01 - ENGLISH - 11/JUL/2018 18

http://en.wikipedia.org/wiki/Digital_watermarking

 SUPPORTED FORMATS IN DETAIL

 Images: BMP , JPG , PCX , PNG , TGA
 Audios: AIFF , MP3 , NEXT/SUN , WAV
 Videos: 3GP , FLV , MP4 , MPG , SWF , VOB
 Flash-Adobe: PDF

Carriers will keep their format
 [in: 32 bits per plane TGA, out: 32 bits per plane TGA]
 [in: Stereo WAV, out: Stereo WAV]
 [in: RGB+Alpha BMP, out: RGB+Alpha BMP]
etc…

Additional tags/chunks and extra bytes will be entirely copied unchanged.
Don't perform any further operation to modified carriers. Their carrier bits would very probably be
altered.

BACK

OPENPUFF V4.01 - ENGLISH - 11/JUL/2018 19

 BMP IMAGES (MICROSOFT)

 Known extensions: *.BMP, *.DIB
 24/32 bits per pixel
 Mono/RGB/RGB+Alpha
 Up to version 5

BACK

 JPG IMAGES (JOINT PHOTOGRAPHIC EXPERTS GROUP)

 Known extensions: *.JPG, *.JPE, *.JPEG, *.JFIF
 8 bits per plane
 1-4 planes per pixel, i.e.: Mono/RGB/YCbCr/YCbCrK/CMY/CMYK
 Baseline lossy DCT-jfif with Huffman compression
 h2v2 (4:4), h1v2 (4:2), h2v1 (4:2), h1v1 (4:1) planes independent alignment

BACK

 PCX IMAGES (ZSOFT)

 Known extensions: *.PCX
 24 bits per pixel Mono/RGB
 Compressed/Uncompressed

BACK

 PNG IMAGES (PORTABLE NETWORK GRAPHICS)

 Known extensions: *.PNG
 8/16 bits per plan
 Mono/RGB/Mono+Alpha/RGB+Alpha
 Interlaced/Linear

BACK

 TGA IMAGES (TARGA TRUEVISION)

 Known extensions: *.TGA, *.VDA, *.ICB, *.VST
 Mono-8 bits per pixel or RGB/RGB+Alpha-24/32 bits per pixel
 Compressed/Uncompressed

BACK

OPENPUFF V4.01 - ENGLISH - 11/JUL/2018 20

 AIFF AUDIOS (AUDIO INTERCHANGE FILE FORMAT)

 Known extensions: *.AIF, *.AIFF
 16 bits per sample
 Mono/Stereo/Multi channels
 Linear, uncompressed

BACK

 MP3 AUDIOS (FRAUNHOFER INSTITUT)

 Known extensions: *.MP3
 MPG 1/MPG 2/MPG 2.5 Layer III
 Fixed/Variable Bitrate
 Mono/Dual Channel/Joint Stereo/Stereo
 ID Tagged

BACK

 NEXT/SUN AUDIOS (SUN & NEXT)

 Known extensions: *.AU, *.SND
 16 bits per sample
 Mono/Stereo/Multi channels
 Linear, uncompressed

BACK

 WAV AUDIOS (MICROSOFT)

 Known extensions: *.WAV, *.WAVE
 16 bits per sample
 Mono/Stereo/Multi channels
 PCM, uncompressed

BACK

 3GP VIDEOS (3RD GENERATION PARTNERSHIP PROGRAM)

 Known extensions: *.3GP, *.3GPP, *.3G2, *.3GP2
 Up to version 10
 Codec independent support
 Up to 32 tracks

BACK

OPENPUFF V4.01 - ENGLISH - 11/JUL/2018 21

 ADOBE FLV VIDEOS (FLASH VIDEO)

 Known extensions: *.FLV, *.F4V, *.F4P, *.F4A, *.F4B
 Up to version 10
 Codec independent support
 Audio MP3 tracks analysis

BACK

 MP4 VIDEOS (MOTION PICTURE EXPERTS GROUP)

 Known extensions: *.MP4, *.MPG4, *.MPEG4, *.M4A, *.M4V, *.MP4A, *.MP4V
 Up to specification ISO/IEC 14496-12:2008
 Codec independent support
 Up to 32 tracks

BACK

 MPG VIDEOS (MOTION PICTURE EXPERTS GROUP)

 Known extensions: *.MPG, *.MPEG, *.MPA, *.MPV, *.MP1, *.MPG1, *.M1A, *.M1V, *.MP1A,
*.MP1V, *.MP2, *.MPG2, *.M2A, *.M2V, *.MP2A, *.MP2V

 Mpeg I Systems - up to specification ISO/IEC 11172-1:1999
 Mpeg II Systems - up to specification ISO/IEC 13818-1:2007
 Codec independent support

BACK

 ADOBE SWF VIDEOS (SHOCKWAVE FLASH)

 Known extensions: *.SWF
 Up to version 10
 Codec independent support
 Audio MP3 tracks analysis

BACK

 VOB VIDEOS (DVD - VIDEO OBJECT)

 Known extensions: *.VOB
 Mpeg II Systems - up to specification ISO/IEC 13818-1:2007
 Codec independent support

BACK

OPENPUFF V4.01 - ENGLISH - 11/JUL/2018 22

 ADOBE PDF FILES (PORTABLE DOCUMENT FORMAT)

 Known extensions: *.PDF
 Up to specification ISO/IEC 32000-1:2008
 Revision independent support

BACK

OPENPUFF V4.01 - ENGLISH - 11/JUL/2018 23

 SUGGESTIONS FOR BETTER RESULTS

CARRIER CHAINS:

Hide your data into single/multiple carrier chains, adding carriers in unexpected order. Unhiding
attempts by unallowed curious people will grow in complexity.

Single carrier example: (Simple, Fast unhiding time, Unsafe)
+MyData >> John.mp3

Single chain example: (Medium complexity, Medium unhiding time, Safe)
+MyData >> Bear.jpg | Zoo.tga | Arrow.png | John.bmp | …

Multiple chains example: (Maximum complexity, Slow unhiding time, Safer)
+MyData (1/n) >> Bear.jpg | Arrow.png | John.bmp | …
…
+MyData (n/n) >> Zoo.tga | Arrow.png | Beep.wav | …

PASSWORD:

Make use of long (>16 chars) easy to remember passwords, changing them every time.

CARRIER BITS SELECTION LEVEL:

Make always use of different levels for each hiding process. Unhiding attempts by unallowed curious
people will grow in complexity.

Example:
Hiding process 1:
 Aiff: Low
 BMP: Very low
 JPG: Maximum
…
Hiding process 2:
 AIFF: Medium
 BMP: Low
 JPG: Minimum
…

OPENPUFF V4.01 - ENGLISH - 11/JUL/2018 24

A FULL SYSTEM COULD BE…

 Hiding your data into many complex chains (hundreds of carriers, with non alphabetical random
order), each one with a completely different set of 32-chars-passwords

 Saving all settings inside an “index” single carrier

Example:

+MyData (1/n) [carrier1 | … | carrier100]

[VeryLongPasswords1]

[BitsSelectionLevel1]

…

+MyData (n/n) [carrier1 | … | carrier100]

[VeryLongPasswordsN]

[BitsSelectionLevelN]

A very unsuspicious “index” carrier (fixed password + fixed bits selection level) holding a text file that
summaries
 carriers name and order
 passwords
 bit selection levels

BACK

OPENPUFF V4.01 - ENGLISH - 11/JUL/2018 25

 OPTIONS: BITS SELECTION LEVEL

(Minimum) 1/8 data, 7/8 whitening.
(Very Low) 1/7 data, 6/7 whitening.
(Low) 1/6 data, 5/6 whitening.
(Medium) 1/5 data, 4/5 whitening.
(High) 1/4 data, 3/4 whitening.
(Very High) 1/3 data, 2/3 whitening.
(Maximum) 1/2 data, 1/2 whitening.

BACK

OPENPUFF V4.01 - ENGLISH - 11/JUL/2018 26

 DATA HIDING STEP BY STEP

BEGIN:

(Hide) Go to hiding panel

Select Hide.

STEP 1 – CHOOSE PASSWORD(S):

(Cryptography A) First password (cryptography keys)
(Cryptography B) Second password (cryptography CSPRNG)
(Scrambling C) Third password (scrambling CSPRNG)
(Enable B) Second password enable/disable
(Enable C) Third password enable/disable

Insert three separate passwords. Each password has to be different (at bit level) and at least 8
characters long. Password type and number can be easily customized disabling the second (B) and/or
the third (C) password. Disabled passwords will be set as the first (A) password.

Example: “DataPssw1” (A) “DataPssw2” (B) “DataPssw3” (C)

(A) 01000100 01100001 01110100 01100001 01010000 01110011 01110011 01110111 00110001 …
(B) 01000100 01100001 01110100 01100001 01010000 01110011 01110011 01110111 00110010 …
(C) 01000100 01100001 01110100 01100001 01010000 01110011 01110011 01110111 00110011 …

(A ∩ B) 98%, (A ∩ C) 99%, (B ∩ C) 99%, HAMMING DISTANCE < 25% = KO

Example: “FirstDataPssw1” (A) “SecondDataPssw2” (B) “AnotherDataPssw3” (C)

(A) 01000110 01101001 01110010 01110011 01110100 01000100 01100001 01110100 01100001 …
(B) 01010011 01100101 01100011 01101111 01101110 01100100 01000100 01100001 01110100 …
(C) 01000001 01101110 01101111 01110100 01101000 01100101 01110010 01000100 01100001 …

(A ∩ B) 70%, (A ∩ C) 67%, (B ∩ C) 68%, Hamming distance ≥ 25% = OK

SUGGESTIONS FOR BETTER RESULTS
WHAT IS DENIABLE STEGANOGRAPHY?

OPENPUFF V4.01 - ENGLISH - 11/JUL/2018 27

http://en.wikipedia.org/wiki/Hamming_distance

STEP 2 – CHOOSE DATA TO BE HIDDEN:

(Browse) Select a file

Choose the secret data you want to hide (typically a zip/rar/… archive).

STEP 3 – CHOOSE CARRIER(S):

(Shuffle) Random shuffle all carriers
(Clear) Discard all carriers
(Add) Add new carriers to the list
(Name)/ (Bits) Sort carriers by name/bits
(+)/(-) Move selected carriers up/down
(Del) Delete selected carriers

Until selected bytes < total bytes try
 adding new carriers
 increasing bit selection level

(I) (II)

Some carriers will not be added because of steganography-process constraints
 (I) not enough carrier bytes (carrier bytes carrier size)

WHAT IS STEGANOGRAPHY?
 (II) unsupported format

SUPPORTED FORMATS IN DETAIL

OPENPUFF V4.01 - ENGLISH - 11/JUL/2018 28

STEP 4 – CHOOSE BITS SELECTION LEVEL:

(Reset Options) Reset all bits selection level to normal
(Add Decoy!) Add a decoy (deniable steganography)
(Hide!) Start hiding

After
 typing twice the same password, at least 8 chars
 selecting a non-empty file to hide
 adding enough carrier bits
 adding a decoy (optional)
start the hiding task

OPTIONS: BITS SELECTION LEVEL

OPENPUFF V4.01 - ENGLISH - 11/JUL/2018 29

STEP 5 (OPTIONAL) – CHOOSE PASSWORD(S) & DECOY DATA:

(Cryptography A) First password (cryptography keys)
(Cryptography B) Second password (cryptography CSPRNG)
(Scrambling C) Third password (scrambling CSPRNG)
(Enable B) Second password enable/disable
(Enable C) Third password enable/disable
(Browse) Select a file
(Reset) Reset password and file
(Check & Accept) Check password correlation and file size

 decoy passwords have to be each other different, and different from data passwords
 decoy password type and number can be customized like data passwords
 decoy data has to be compatible (by size) with sensitive data

∑ k { 1, N-1 } used_carrier_bytes(carrk) < Sizeof(Decoy) ≤ ∑ k { 1, N } used_carrier_bytes(carrk)

WHAT IS DENIABLE STEGANOGRAPHY?

TASK REPORT:

End report summarizes all information needed for a successful unhiding.

BACK

OPENPUFF V4.01 - ENGLISH - 11/JUL/2018 30

 DATA UNHIDING STEP BY STEP

BEGIN:

(Unhide) Go to unhiding panel

Select Unhide.

STEP 1 – CHOOSE PASSWORD(S):

(Cryptography A) First password (cryptography keys)
(Cryptography B) Second password (cryptography CSPRNG)
(Scrambling C) Third password (scrambling CSPRNG)
(Enable B) Second password enable/disable
(Enable C) Third password enable/disable

Insert your passwords (secret to get secret data, decoy to get decoy data), enabling only those used at
hiding time.

SUGGESTIONS FOR BETTER RESULTS
WHAT IS DENIABLE STEGANOGRAPHY?

STEP 2 – CHOOSE CARRIER(S):

(Clear) Discard all carriers
(Add) Add new carriers to the list
(Name)/ (Bits) Sort carriers by name/bits
(+)/(-) Move selected carriers up/down
(Del) Delete selected carriers

Add all the carriers that have been processed during the hide task.
SUPPORTED FORMATS IN DETAIL

OPENPUFF V4.01 - ENGLISH - 11/JUL/2018 31

STEP 3 – CHOOSE BITS SELECTION LEVEL:

(Reset Options) Reset all bits selection level
(Unhide!) Start unhiding

After
 typing twice the same password
 adding all the carriers, in the right order
 setting all bits selection levels to the original value
start the unhiding task

OPTIONS: BITS SELECTION LEVEL

OPENPUFF V4.01 - ENGLISH - 11/JUL/2018 32

TASK REPORT:

If carriers have been added in the right order, with the original bits selection levels, OpenPuff will be
able to reconstruct the original data. For better security, data will be reconstructed only after a
successful CRC check.

Even the slightest change in one of the carrier could damage the data and prevent every unhiding try.

BACK

OPENPUFF V4.01 - ENGLISH - 11/JUL/2018 33

 MARK SETTING STEP BY STEP

BEGIN:

(Set Mark) Go to mark setting panel

Select Set Mark.

STEP 1 – CHOOSE MARK:

(Insert mark) Your mark

Type once your mark.

STEP 2 – CHOOSE CARRIER(S):

(Clear) Discard all carriers
(Add) Add new carriers to the list
(Name) Sort carriers by name
(Del) Delete selected carriers
(Set Mark!) Start mark setting

Add all the carriers that need to be marked.
Start the setting task.

SUPPORTED FORMATS IN DETAIL

BACK

OPENPUFF V4.01 - ENGLISH - 11/JUL/2018 34

 MARK CHECKING STEP BY STEP

BEGIN:

(Check Mark) Go to mark checking panel

Select Check Mark.

STEP 1 – CHOOSE CARRIER(S):

(Clear) Discard all carriers
(Add) Add new carriers to the list
(Name) Sort carriers by name
(Del) Delete selected carriers
(Set Mark!) Start mark checking

Add all the carriers that need to be checked. Start the checking task.
SUPPORTED FORMATS IN DETAIL

TASK REPORT:

End report summarizes, for each carrier, integrity and mean integrity information.

BACK

OPENPUFF V4.01 - ENGLISH - 11/JUL/2018 35

 DATA & MARK ERASING STEP BY STEP

BEGIN:

(Clean Up) Go to data & mark erasing panel

Select Clean Up.

STEP 1 – CHOOSE CARRIER(S):

(Clear) Discard all carriers
(Add) Add new carriers to the list
(Name) Sort carriers by name
(Del) Delete selected carriers
(Clean Up!) Start data & mark erasing

Add all the carriers that need to be cleaned and start the cleaning task.

SUPPORTED FORMATS IN DETAIL

BACK

OPENPUFF V4.01 - ENGLISH - 11/JUL/2018 36

